• Title/Summary/Keyword: 실내공기제어

Search Result 84, Processing Time 0.031 seconds

A study on Development and Application of Sequential Control Algorithm of Ventilation and Air Cleaning System for Improving Indoor Air Quality in School Classroom (학교교실의 실내공기질 개선을 위한 환기장치 및 공기청정기의 연동제어 알고리즘 개발 및 적용 연구)

  • Park, Hwan-Chul;Lee, Dong-Hyeon;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.187-194
    • /
    • 2020
  • This study presents the energy-saving sequential control algorithm to handle indoor CO2 and PM2.5 for the improvement of the air quality of school classrooms. To solve indoor air quality (IAQ) problems, air cleaning and ventilation systems are mainly used for school classrooms. Although air cleaning is able to collect PM2.5, it is difficult to remove harmful gas substances. The ventilation system is suitable to tackle CO and CO2, the volume ventilation, however, is relatively small. In this paper, to remove CO2 and PM2.5, the pollutant balance equation for improving indoor air quality is reviewed. The sequential control algorithm of the ventilation and air cleaning system with four levels of criteria is introduced for the effective removal of pollutants. The proposed sequential control algorithm confirms that indoor CO2 and PM2.5 can be properly controlled below the standard value. In addition, the sequential operation of air cleaning and ventilation systems has shown significant improvement in IAQ compared to the independent ventilation system operation. Particularly, such systems are efficient when outdoor PM2.5 is high.

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

Sound Absorption Material Using Aluminum Sash (알루미늄 새시를 이용한 흡음구조)

  • Kim, Jung-Joong;Jeong, Jeong-Ho;Sohn, Jang-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • 다양한 공연장 및 대공간에서의 실내음향 제어를 위해서는 실내마감재료의 흡음 및 확산성능을 제어할 수 있는 재료가 필요하다. 본 연구에서는 이를 위해 알루미늄 새시를 이용한 흡음구조를 개발하였으며, 흡음특성을 조사하기 위하여 수직입사 흡음계수와 잔향실법 흡음계수를 측정하였다. 수직입사 흡음계수 측정결과 알루미늄 다목적 흡음재의 타공구조와 인서트에 의해 형성되는 공간이 공명형 흡음기의 역할을 하여 중.저주파수 대역의 흡음계수가 증가되는 것으로 나타났다. 잔향실법 흡음계수 측정결과 알루미늄 새시를 이용한 흡음구조의 형성에 따라 공명주파수 대역보다 낮은 중저주파수 대역의 흡음계수가 증가되는 것으로 나타났다. 공기층 증가에 따라 공명주파수 이상 대역에서의 흡음률은 증가되고 주파수 대역별 흡음계수 편차도 감소되는 것으로 나타났으며, 고주파수 대역의 흡음률 향상을 위한 방안이 필요한 것으로 나타났다.

  • PDF

Numerical Analysis of Thermal Environment Control in High-Density Data Center (고밀도 데이터센터의 열환경제어를 위한 수치해석)

  • Kwon, Oh-Kyung;Kim, Hyeon-Joong;Cha, Dong-An
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.821-828
    • /
    • 2012
  • Increasing heat generation in CPUs can hamper effective recirculation and by-pass because of the large temperature difference between the exhaust and the intake air through a server room. This increases the overall temperature inside a data center and decreases the efficiency of the data center's cooling system. The purpose of the data center's cooling system is to separate the intake and exhaust air by controlling the computer room air-conditioner(CRAC). In this study, ICEPAK is used to conduct a numerical analysis of a data center's cooling system. The temperature distribution and the entire room are analyzed for different volumetric flow rates. The optimized volumetric flow rate is found for each CPU power. The heat removal and temperature distribution for CPU powers of 100, 120, and 140 W are found to be the best for a volumetric flow rate of $0.15m^3/s$. The numerical analysis is verified through RTI indicators, and the results appear to be the most reliable when the RTI value is 81.

Implementation of Environmental Control System based on USN for Improving Comfort in Underground Space (지하공간의 쾌적도 향상을 위한 USN 기반의 환경제어시스템 구현)

  • Ryu, Jae-Bok;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1292-1295
    • /
    • 2012
  • 인구 과밀화 및 급격한 도시 팽창은 지상공간에서 거주하는 인간 삶의 질을 위협하고 있다. 따라서 지상공간의 개발을 억제하여 환경을 보호하고 도시 공간 이용의 효율성을 최대화하기 위해 지하 공간을 개발하고자 하는 움직임이 활발하다. 자연환경으로부터 격리된 구조인 지하공간은 지상공간에 비해 실내 공기 질을 쾌적한 상태로 유지하기 어려운 밀폐된 환경이므로 오랜 시간동안 상주하는 거주자 및 한시적 이용자들의 건강에 영향을 미치는 온도, 습도, $CO_2$, 먼지 등의 환경을 제어하기 위한 기술 개발이 필요하다. 본 연구에서는 지하공간의 쾌적도 향상을 위해 온 습도 및 $CO_2$, 먼지센서를 이용한 통합 센서를 제작하여 현재 지하공간의 환경정보를 실시간 모니터링하고 실내공간의 쾌적 지표를 기반으로 환풍기, 송풍기 등의 디바이스를 제어하기 위한 USN 기반의 환경제어시스템을 구현한다. 제안한 시스템을 통해 지하공간의 환경을 개선할 뿐만 아니라 고가의 계측 장비로 인한 비용 절감 및 이동성과 확장성 등의 부가적인 효과를 기대한다.

The Effects of Winch-curtain Ventilation on the Indoor Environment of a Fattening Swine House (윈치커튼 환기가 비육돈사의 실내 환경에 미치는 영향)

  • Kim, Hyeon-Tae;Song, Jun-Ik;Choi, Hong-Lim
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The study was conducted to investigate the effects of climate on indoor environment of a swine house with natural. This study was tested in the beef swine stall at Young-in, Kyung-ki do. The test was experimented for the effect of interior environment by the outdoor environment and the interior-pan. The results are as follows. 1. In test 1 ($T_{out}$ : $25.7^{\circ}C$, without fan), an indoor air flow pattern was showed that entered from sidewall winch-curtain to went out of a indoor by the ridge winch-curtain. And the velocity of a section of the center was measured two times as large as the velocity of the floor. It is the acceleration of the velocity by thermal buoyancy. And, the entered air was rapidly dissipated by flow energy. So that in the swain livestock with sidewall winch-curtain is effected by thermal buoyancy. And the air temperature of the indoor was distributed more higher as compared with the outdoor temperature. This result is caused by the sensible heat from swine and the ventilation is restricted. 2. In test 2 (($T_{out}$ : $25.7^{\circ}C$, with fan), the velocity of a section of the center was measured more higher as compared with the test 1. And the variance of air velocity was distributed higher as compared with the test 1. This result is showed dead region of air flow with a fan operation. And, the variance of gas density was distributed lower as compared with the test 1.

Smart Home Service System Considering Indoor and Outdoor Environment and User Behavior (실내외 환경과 사용자의 행동을 고려한 스마트 홈 서비스 시스템)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.473-480
    • /
    • 2019
  • The smart home is a technology that can monitor and control by connecting everything to a communication network in various fields such as home appliances, energy consumers, and security devices. The Smart home is developing not only automatic control but also learning situation and user's taste and providing the result accordingly. This paper proposes a model that can provide a comfortable indoor environment control service for the user's characteristics by detecting the user's behavior as well as the automatic remote control service. The whole system consists of ESP 8266 with sensor and Wi-Fi, Firebase as a real-time database, and a smartphone application. This model is divided into functions such as learning mode when the home appliance is operated, learning control through learning results, and automatic ventilation using indoor and outdoor sensor values. The study used moving averages for temperature and humidity in the control of home appliances such as air conditioners, humidifiers and air purifiers. This system can provide higher quality service by analyzing and predicting user's characteristics through various machine learning and deep learning.

Submerging Performances of Automatic Submersible Buoy Operated by Air Control (공기 제어에 의한 자동 부침 부자의 부침 성능)

  • Kim, Tae-Ho;Hur, Jung-Gyu;Yang, Kyong-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.743-749
    • /
    • 2010
  • The primary object of this study was to develop the control algorithm and program for automatic submersible buoy which is free to move vertically within the water column by adjusting weight and buoyancy forces by air control. The experiment was performed to validate the usefulness of the program in the indoor water tank. In the experiment, the automatic submerging and surfacing of the buoy were controlled by water-pressure gauge and air control system. The buoy is raised by injecting compressed air from a compressor and then is lowered by releasing the air. The submerging and surfacing characteristics of the buoy calculated with the numerical model were similar to measurements obtained with the experiment. It was concluded that the algorithm and program could be useful in analyzing various parameters and submerging mechanisms required to design new type of automatic submersible fish cage system.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.