• Title/Summary/Keyword: 실내공간환경

Search Result 728, Processing Time 0.031 seconds

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.

Indoor Environment Due to Multi-cultural Complex Space Structure Impact on the Choice of Guests (복합 문화공간 구조에 따른 실내환경이 이용객의 선택에 미치는 영향)

  • Kang, Jin-Young;Won, Young-Suk;Cha, Jung-Hoon;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • Today, people are becoming more conscious regarding environmental-friendliness, and the society as a whole is becoming more aware of it. With such phenomenon, the purpose of this research is to examine how comfort and pleasantness of indoor environment influences when selecting a place for multi-cultural complex. To demonstrate the stated hypothesis, I have preceded the experiment by selecting the C multi-cultural complex of closed-type structure and T multi-cultural complex of open-type structure. The next step I took, in order to validate the public's awareness of environmental-friendliness, was conducting a survey. I then deducted a conclusion through comparison and analysis of experiment measures with survey result. As a result of the research, the experiment measures of each air, light, heat condition of the T multi-cultural complex of open-type structure had a higher measurement for the comfort and pleasantness than the C multi-cultural complex of closed-type structure. Moreover, after validating the consciousness of the public through the survey, they had a tendency preferring T multi-cultural complex of open-type structure over C multi-cultural complex of closed-type structure in terms of comfort and pleasantness. To summarize, it is proper to conclude that the criteria - comfort and pleasantness of indoor environment - has influenced significantly when it comes to selecting a multi-cultural complex through both the experiment and the survey result.

  • PDF

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.

Learning-Based People Counting System Using an IR-UWB Radar Sensor (IR-UWB 레이다 센서를 이용한 학습 기반 인원 계수 추정 시스템)

  • Choi, Jae-Ho;Kim, Ji-Eun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • In this paper, we propose a real-time system for counting people. The proposed system uses an impulse radio ultra-wideband(IR-UWB) radar to estimate the number of people in a given location. The proposed system uses learning-based classification methods to count people more accurately. In other words, a feature vector database is constructed by exploiting the pattern of reflected signals, which depends on the number of people. Subsequently, a classifier is trained using this database. When a newly received signal data is acquired, the system automatically counts people using the pre-trained classifier. We validated the effectiveness of the proposed algorithm by presenting the results of real-time estimation of the number of people changing from 0 to 10 in an indoor environment.

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Study on the Quadcopter for Person Search using PID Control and HSV (PID 제어 및 HSV를 활용한 인명 수색용 쿼드콥터에 관한 연구)

  • Ji, Min-Seok;Kim, Byeong-Kwan;Kim, Jun-Woo;Park, Nae-Hyeok;Park, Hyoung-keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.139-146
    • /
    • 2022
  • Mountain accidents such as forest fires and missing people are increasing as hikers increase due to indoor activities restrictions caused by the prolonged COVID-19 incident. If a dangerous situation occurs at outside where rescue workers cannot reach, the search time for person can be reduced using a quadcopter. Considering this, in this paper, Multiwii is used to smoothly hover the quadcopter by setting optimized PID values of the x-axis, y-axis, and z-axis (Yaw) according to the change in the inclination of the gas. In addition, after installing Open CV on Raspberry Pie, the camera uses HSV color space to filter the color such as the description of the person, and uses a thermal imaging camera to receive thermal sensing images in real time in environments where color extraction is difficult. As a result, it was confirmed that hovering was possible at a height of 2 to 8 m, blue extraction was possible at a height of 5 m, and heat detection was possible at a distance of less than 10 cm.

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

A Study on XR Handball Sports for Individuals with Developmental Disabilities

  • Byong-Kwon Lee;Sang-Hwa Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.31-38
    • /
    • 2024
  • This study proposes a novel approach to enhancing the social inclusion and participation of individuals with developmental disabilities. Utilizing cutting-edge virtual reality (VR) technology, we designed and developed a metaverse simulator that enables individuals with developmental disabilities to safely and conveniently experience indoor handicapped handball sports. This simulator provides an environment where individuals with disabilities can experience and practice handball matches. For the modeling and animation of handball players, we employed advanced modeling and motion capture technologies to accurately replicate the movements required in handball matches. Additionally, we ported various training programs, including basic drills, penalty throws, and target games, onto XR (Extended Reality) devices. Through this research, we have explored the development of immersive assistive tools that enable individuals with developmental disabilities to more easily participate in activities that may be challenging in real-life scenarios. This is anticipated to broaden the scope of social participation for individuals with developmental disabilities and enhance their overall quality of life.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.