• Title/Summary/Keyword: 신재생에너지 발전

Search Result 1,341, Processing Time 0.023 seconds

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

A Study on Efficiency Analysis of Wind Power Generator (풍력 발전 효율성 분석에 관한 연구)

  • Park, SangJun;Hong, Yousik;Kang, Jeong Jin;Yang, JaeSoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.219-224
    • /
    • 2017
  • These days, it is developed renewable energy-based wind power technology. Wind power generation is relatively quiet, and environmental damage is relatively low. In developed countries, a lot of wind power generation is being built. In Korea, the generation efficiency is low because there are few areas where the wind speed is maintained for four seasons. In recent years, forest damage, low noise, and environmental degradation complaints are frequent. In this paper, we performed an experiment to manage pitch control effectively by analyzing wind, direction, and temperature in real time based on FUZZY rule and cluster analysis.Using the new algorithm proposed by the simulation results, we could verify the efficiency of wind power generation pitch control for wind condition and direction condition by using the pitch control analysis technique.Furthermore, visualization representations have proven to automatically analyze early warning and efficiency of generator performance.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

A Study on the Characteristics of Firm Agglomeration of Green Energy Industry in Daegyeong Region (대경권 친환경에너지산업 집적 특성에 관한 연구)

  • Yoon, Chil-Seok
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.6
    • /
    • pp.689-705
    • /
    • 2010
  • The purpose of this study is to examine the geographical distribution and the clustering characteristics as an industrial cluster in order to provide alternative fundamental data for the preparation of the policies to facilitate the development of the Green Energy Industry. The main source of the data in this study is the outcome of a survey conducted to the firms and environment specialist from June 21st, 2010 to July 23rd, 2010. The Green Energy related companies in Daegyeong region are clustered around Pohang and Gumi, Gyeongbuk, and Dalseo District of Daegu Metropolitan City. The core element of the sustainability of the Green Energy Industry in the region is the inducement of the large-scale corporate presence in the region as well as the technical and geographical proximity. That is, the fact that there are sister companies established by the large scale corporate Daegyeong region as they have chosen this field for their new drive for growth. The major location factors are proximity, higher quality expectations from the local demands, technical availability, and competition with other companies of the same industry in the region, rather than the availability of the raw material. And the choke points for these companies are the financial support of R&D and the policy support of specialist training. The policy to facilitate the development of the industry in question in Daegyeong region, therefore, should shift from its previous focuses on infrastructure building and taxation benefits to financial supports for the technical research, human resource development in response to the needs of the companies. Also, programs to support the proficiency training for the already-hired work forces and development of new policies for the Green Energy Industry are needed to be introduced for the development of the Green Energy Industry in Daegyeong region.

  • PDF

Effect of Seawater/Fresh Water Flow Rates on Power Density of Reverse Electrodialysis (RED 전력밀도에 미치는 해수/담수 유량의 영향)

  • Na, Jong-Chan;Kim, Han-Ki;Kim, Chan-Soo;Han, Moon-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.624-628
    • /
    • 2014
  • Reverse electrodialysis (RED) is a technique to produce electricity from two feed water that has different salinity. Recently, RED has been considered the attractive technology because this new process has large global potential and possibility to generate energy from abundant but largely unused resources. To make RED an economically attractive technology, the optimization of operation condition should be developed. In this study, we investigate the relation of internal resistance to power density of RED. And the effect of sea water and fresh water flow rate on power density was confirmed. To minimize the internal resistance and to increase power density of RED, the ratio of sea water and fresh water flow rate was optimized. Experimental result show the best performance with $1.30W/m^2$ of power density at 1.7 flow ratio of seawater/freshwater.

A Study on the Formation and the Change of the CDM(Clean Development Mechanism) Industry in the Republic of Korea from the Change in Industrial Networks (한국 청정개발체제 네트워크 변화에 따른 산업 형성과 변화 연구)

  • Lee, Jin-Hyung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.486-502
    • /
    • 2017
  • This study investigated the formation process and networks of Korean Clean Development Mechanism(CDM) industry. It aimed to reveal the factors and the drivers for the formation processes of this industry in the specific place. Based on the analysis of the Project Design Documents(PDDs) of the CDM projects and the collected project data by international institutions, surveys, and interviews were done. On the basis of these data, the analysis on the industrial change as complex emergent effects by the network evolution caused by adaptive activity of firms is conducted. In the time of the genesis, a kind of serendipity that the industrial activities of Korean firms meet to new system, CDM, In the changing process of the Korean CDM industry, the role of policies fo Korean Government was important to promote the new and renewable energy projects of the power companies. In the time of restructuring, Korean government policies formed new initial conditions for the new domestic GHGs reduction industry. In this processes, the localization of knowledge acted as a key driver for the formation of the Korean CDM industry.

Effect of Biomass Co-firing Ratio on Operating Factors of Pulverizer in 500 MW Coal-fired Power Plant (500 MW 석탄화력 발전소에서 바이오매스 혼소율이 미분기 운전인자에 미치는 영향)

  • Geum, Jun Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.28-40
    • /
    • 2022
  • As the proportion of renewable energy generation is expected to increase, public power generation businesses need to actively consider implementing the expansion of biomass mixing, In this study, the biomass co-firing rate is being changed from 0wt.% to 5.0wt.% at 500MW coal-fired power plant, measuring the major operation characteristics of the pulverizer. First, the composition analysis and grinding characteristics of lignocelluosic biomass were examined, and the effect of volume increase on dirrerential bowl pressure difference, motor current, coal spillage, outlet temperature, and internal fire count was analyzed. As the co-firing rate increased, it was confirmed that the difference in the differential bowl pressure, motor current, and coal spillage treated increased, and the outlet temperature was minimal. The number of internal fires is difficult to find a clear correlation, but it has been confirmed that it is highly likely to occur in combination with other driving factors.

  • PDF

A Study on Eco-efficiency in power plants using DEA Analysis (DEA 모형을 이용한 발전회사 환경효율성에 대한 연구)

  • Han, Jung-Hee
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.119-133
    • /
    • 2013
  • This study aims to provide power generating plants with eco-efficiency information. To implement the purposes, of study, both DEA(Data, Envelopment Analysis) model and interview were incorporated in terms of methodologies. To analyze the managerial efficiency, total labor cost and number of employees were considered as input factors. CO2, NOx, and water also were considered as input factors to analyze eco-efficiency. Both annual total power product and annual total revenue were used as output factors. CRS(Constant Return to Scale) and VRS(Variable Return to) model were facilitated in this analysis. According to the findings, most of the power plants were evaluated as 'Efficient'' taking into consideration of average value, both 0.928 from CCR model and 0.969 from VRS model. 7 DMUs including DMU3 and DMU12 are efficient out of 35 DMUs relatively, other DMUs are inefficient. For results of inefficient output factors distribution, it was found that inefficiency for NOx was marked relatively higher than CO2. In order to improve the eco-efficiency in the power plants in the long term, the target amount of Co2 as well as NOx reduction needs to be properly proposed in consideration of particularity of power plants. In the long run, renewable energy, alternative fuels should be adapted to reduce the eco-inefficient.

Development of a compact fuel processor for building fuel cells (건물용 연료전지를 위한 컴팩트 연료개질기 개발)

  • Jung, Un Ho;Koo, Kee Young;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.224.2-224.2
    • /
    • 2010
  • 연료개질기는 연료전지 시스템의 핵심 구성요소 중의 하나로 도시가스로부터 수소를 생산하는 역할을 담당한다. 연료개질기는 주로 탈황, 수증기 개질, 수성가스 전이, 선택적 산화 반응의 4단계로 구성되어 있으며 이 중 상온 탈황부분을 제외한 나머지 부분은 일체화 설계를 통해 제작된다. 탈황의 경우 도시가스에 포함된 부취제인 황화합물를 제거하여 후단에 위치한 촉매층이 황에 의해 피독되는 것을 막는 역할을 하며 주로 상온흡착식 탈황제를 사용한다. 황이 제거된 도시가스는 물과 함께 연료개질기로 도입되어 수증기 개질반응을 통하여 수소, 일산화탄소, 이산화탄소 및 소량의 메탄과 미반응 수증기로 구성된 개질가스로 전환된다. 이후의 수성가스 전이반응에서는 일산화탄소가 물과 반응하여 수소 생산량을 늘리며 동시에 일산화탄소의 농도를 낮추게 된다. 또한 고분자 전해질 연료전지에 공급되는 개질가스는 선택적 산화반응을 통하여 일산화탄소의 농도를 10ppm이하로 유지하게 된다. 이러한 기능의 연료개질기 개발의 주요 이슈로는 컴팩트화 및 고효율화이며 이 두가지 요소를 고려하여 연료개질기를 설계하여야 한다. 연료전지 시스템의 전체부피를 줄이기 위한 노력의 일환으로 연료개질기의 컴팩트화가 요구되는데 가정용 연료전지 기술 선진국인 일본 제품의 경우 $1Nm^3/h$급 연료개질기의 부피는 20L정도로 알려져 있다. 또한 연료전지 시스템의 효율은 연료개질기의 개질효율과 연료전지 스택의 발전효율의 곱으로 계산되기 때문에 연료개질기의 연료개질 효율은 전체 시스템의 효율에 직접적으로 영향을 미치게 된다. 한국에너지기술연구원에서는 수소생산량 기준 $1Nm^3/h$급 연료개질기의 개발을 완료하였으며 크기 및 효율면에서 선진국 제품과 비교하여 동등 또는 우위의 수준을 달성하였다. 연료개질기 내부의 혼합 및 분배 구조를 개선하고 각 촉매층의 최적 배치를 통해 연료개질기의 부피를 최소화 하였으며 연료개질기 내부에서 고온부위와 저온부위 사이의 최적 열교환을 통해 열효율을 극대화 시켰다. 현재 개발된 $1Nm^3/h$급 개질기의 단열 후 부피는 13.5L 그리고 단독운전 시 열효율은 80%(LHV)로 측정되었다. 또한 $1Nm^3/h$급의 연료개질기의 스케일-업 설계를 통하여 수소생산량 3, $5Nm^3/h$ 규모의 연료개질기를 개발하였으며 성능평가가 진행 중이다.

  • PDF