• Title/Summary/Keyword: 신소재의 적용

Search Result 634, Processing Time 0.02 seconds

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

Basic Study for Evaluation on Application of Energy Lining Segment (Energy Lining Segment 적용성 평가를 위한 기초연구)

  • Han, Sang-Hyun;Park, Sisam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.143-147
    • /
    • 2013
  • Geothermal energy is easy to take advantage of renewable energy stored in the earth and the heat exchanger can be collected through a heat exchange piping system. In this study, have been developed a heat exchange pipe loop system which it could be installed in tunnel segmental linings to collect geothermal energy around the tunnel. The heat exchange pipe loop system incorporated in the tunnel segments circulate fluid to transport with heat from the surrounding ground and the heat can be used for heating and cooling of nearby structures or districts. The segmental lining incorporating heat exchange pipe loop system are called as ELS (Energy Lining Segment). There are a number of examples incorporating a heat exchange pipe loop system in a tunnel lining in Europe. In this study, a field case using Energy Lining Segment in Germany and applications in urban area are thoroughly examined. In addition, a CFD (Computational Fluid Dynamics) analysis was carried out to investigate heat flow in Energy Lining Segment.

A Study on Unconfined Compressive Strength of CLSM with Paper Sludge Ash (제지애쉬가 적용된 CLSM의 일축압축강도 특성에 관한 연구)

  • Park, Jeong-Jun;Lee, In-Hwan;Shin, Eun-Chul;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.253-262
    • /
    • 2019
  • This paper described the evaluation results on unconfined compressive strength characteristics of CLSM with paper sludge ash, in order to develop a CLSM that can prevent sewer pipe damage. The flowability test and the unconfined compressive strength test were performed according to mix design condition of CLSM. The flowability test result showed that the water content, which can satisfy the flowability criteria, was 24% to 32% according to the mix design condition. The results of unconfined compressive strength test showed that the strength incremental ratio was high between 1 and 7 days of curing time, and the strength at this time was more than about 50% of the strength at 28 days of curing time. The strength of CLSM was greatly influenced by fly ash. However, it was analyzed that the mixture of paper sludge ash is required when the reference strength of CLSM is considered. Although the strength of the high cement ratio was higher than that of the low cement, a cement ratio of 5% would be a reasonable mix design condition of CLSM.

Evaluation of Strength Incremental Ratio of Korean Marine Clayey Soil (국내 해성 점성토의 강도증가율 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2017
  • Applicability of Skempton's and Hansbo's equation for estimating strength incremental ratio of Korean marine clayey soil was analyzed. These empirical equations have been commonly applied to design soft ground improvement by, especially, staged loading method. Strength incremental ratios proposed by Skempton (1954, 1957) and Hansbo (1957) using field vane tests(FVTs), measured in Scandinavia depends on plasticity index and liquid limit. Although lean clay in Scandinavia can be classified as clay based on USCS, this soil contains no clay mineral because it was produced by the glacial grinding of rock, sometimes, called rock flour. On the contrary, plasticity indices of Korean marine clayey soils increase linearly with the percentage of clay fraction (% finer than $2{\mu}m$ by weight). Except for strength incremental ratios using $q_u/2$ values in the case of soils having a low plasticity, such as Incheon, Hwaseong and Gunsan soils, these values are in the range of 0.25 to 0.35, independently of the plasticity index, $I_p$.

Field Applications of Carbon Dioxide Pellet for Underground Pipe Cleaning (지중 매설관의 세정을 위한 카본 다이옥사이드 펠릿의 현장 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2017
  • In this study, a new cleaning method using carbon dioxide pellet in the part of underground pipe cleaning method was proposed and verified. First of all, the commentary of The Society for Protective Coatings was examined in detail to determine the quantitative cleaning effects. Also, field tests were carried out to confirm the application of the new method. In the test, the surface condition of inner pipe after the application of the new method was investigated and two types of nozzles were compared in the tests. Also, the tests to measure the final impact pressure of air and carbon dioxide pellet mixtures were performed to investigate the losses of air pressure were investigated. Through this verification on the new method, it was found that the new method is very efficient for the removal of the rust in the pipe cleaning works. Also, the nozzle with excellent cleaning effect was also selected. As a result, this method will be able to largely contribute to the recycling of $CO_2$ which is limited to the use as a cooling agent or the storage of waste.

Case Study on Application of PHC Pile to Earth Retaining and Retention Wall (옹벽겸용 흙막이벽으로 PHC말뚝의 적용 사례 연구)

  • Han, Jung-Geun;Hong, Ki-Kwon;Eo, Yun-Won;Kim, Sang-Kwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2006
  • The construction of earth retaining wall and structure which get environmental element have to appling at the same time, then construction period and construction cost increase. These system which is presented to overcomes shortcoming and have function of earth retaining wall and retention wall at the same time. However, because existing method has limit excavation depth, the advanced design pattern more than existing method, rows of pile was applied. The workability and stability of applied design method are evaluated through analyze of construction case. The results confirmed that application design method can solve displacement of pile and limit excavation depth in existing earth retaining wall.

  • PDF

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

Applicability of Solidified Soil as a Filling Materials of Bored Pile (매입말뚝 충전재로서 고화토의 적용성)

  • Kim, Khi-Woong;Chai, Jong-Gil;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • The cement paste is mostly used as the filling materials of bored pile in Korea. The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The injection capacity of solidified soil is compared with cement paste's based on unconfined compressive strength test and field load test, and the appropriate of test results is evaluated by design criterion. The evaluation result shows that the capacity of excavated soil with stabilizer is similar to cement paste and the solidified soil is able to apply as filling materials of bored pile because it is satisfied with design criterion.

Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation (팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석)

  • Lee, Kicheol;Choi, Byeon-Ghyun;Park, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to evaluate the suitability of emergency underground cavity restoration method filling cavity with expansive material based on numerical analysis. For the numerical analysis, experiments were conducted to evaluate properties of expansive material. Based on the measured expansion pressure of the expansive material from the experiment, behavior of underground cavity restoration with various cavity dimensions (variation of height and width of rectangular-shape cavity) was numerically assessed. As a result of analysis, the vertical displacements of the top and bottom of cavity were significantly influenced by the cavity width and lateral displacements of cavity sides were highly dependent on cavity height. These vertical and lateral displacements were increased with increasing expansion pressure of expansive material. Also, when the expansion pressure was applied, the vertical displacement of the upper surface layer of the road was less dependent on cavity height, and was greatly influenced by cavity width.

Prediction of Slope Failure Using Control Chart Method (통계관리도 기법을 적용한 사면붕괴 예측)

  • Park, Sung-Yong;Chang, Dong-Su;Jung, Jae-Hoon;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2018
  • In this study, a field model experiment was performed to analyze the bahavior of slope during failure. It was analyzed through x-MR control chart method with inverse displacement and K-value. As a result, the portent was confirmed at 4 minutes before slope failure in Case 1. The change of the control limit line according to moving range was analyzed and it was effective to apply K = 3. Use of the inverse displacement and x-MR control chart method will be useful for the prediction of abnormal behavior through quick and objective judgment. Prediction of slope failure using control chart method can be used as basic data of slope measurement management standard, and it can contribute in reduction of life and property damage caused by slope disaster.