• Title/Summary/Keyword: 신선중

Search Result 849, Processing Time 0.036 seconds

Determination of dichloroacetic acid and trichloroacetic acid in fresh-cut salads using gas chromatography-mass spectrometry (GC-MS를 이용한 신선편의 샐러드 중 dichloroacetic acid와 trichloroacetic acid의 분석)

  • Kim, Hekap;Lee, Seong-gyun;Yun, A-hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.12-17
    • /
    • 2019
  • Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in fresh-cut salads available from the market were determined by gas chromatography-mass spectrometry (GC-MS). The target compounds in 3 g of acidified homogenates were extracted with 20 mL of methyl t-butyl ether (MTBE). The extract was concentrated to 1 mL and heated for 1 h at $55^{\circ}C$. The analytes were separated using a DB-1701 column and detected with a mass spectrometer. The method detection limit was approximately $6{\mu}g/kg$, and both analytical accuracy and precision were found to be satisfactory. The linearity of the calibration curves expressed as the coefficients of determination was >0.996. The analysis of seven samples using the established method showed that the four samples contained considerable amounts of analytes ($25.4-31.2{\mu}g/kg$ of DCAA and $18.8-46.1{\mu}g/kg$ of TCAA). These results raised a concern about the impact of fresh-cut salad consumption on human health.

Growth, Storage and Fresh-cut Characteristics of Onion (Allium cepa L.) in Unstable Environmental Condition and Storage Temperature (양파의 이상 재배조건에서 생육과 저장온도에 따른 저장성 및 포장한 신선편이 특성)

  • Lee, Jung-Soo;Chang, Min-Sun;Park, SuHyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.143-154
    • /
    • 2016
  • The purpose of this study was investigated the quality changes before and after harvesting, storage and, processing of onion. Experiments were carried out to compare the effect on the characteristics of the postharvest from preharvest factors using onion. This experiment had identified the characteristics of harvested onions after cultivating with several preharvest factors such as the light and water conditions. These tests were conducted in an onion growth in the field, storage, and processing of fresh-cut during a laboratory periods of 2 years. In first year, onion cultivars ('Kars' and 'Pop') were produced under stable or unstable environment conditions, these onions were stored at low temperature(0?). Measurement was evaluated by the growth amount after harvesting, and the fresh weight loss and respiration rate during storage. According to different culture conditions and storage temperatures, it was investigated the properties of the fresh-cut onion. Growth of onion was varied depending on the cultivars and culture conditions. The amount of growth on 'Kars' and 'Pop' onions were decreased by excessive soil water conditions with shading. These influences were found the morphological differences resulting for the cell tissue of onion being rough and large. Onion cultivated in excessive soil water with shading affected the degree of its respiration rate and fresh weight loss during storage. Ones in excessive soil water with shading were higher than the control in fresh weight loss and respiration rate, respectively. However fresh-cut onion could not investigated to clarify the difference due to effects of cultivation condition and storage temperature on some measure items such as electrolyte leakage and microbial number change. There was a change of only electrolyte leakage depending on the storage temperature, rather than cultivated conditions before harvesting factor. The results showed that the onion grown on in the good environment was represented to a good quality produce even after harvesting.

Quality and minimal processing characteristics of 'Ssam' vegetables during storage (국내산 쌈채소의 신선편의 가공적성 및 저장 중 품질변화)

  • Hwang, Tae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • This study was conducted to determine the minimal processing characteristics of four vegetables (brown mustard, kale, red beet and red lettuce) for wrapping (Ssam). Prior to evaluation, the vegetable leaves were cut, washed, and packaged. The texture, weight loss, browning index, pH, gas concentrations ($O_2$ and $CO_2$), microbial growth, and organoleptic qualities of the leaves were assessed at $10^{\circ}C$ for 7 days. The cutting strength of red beet was significantly different among leaves. The initial springiness of brown mustard was the lowest (0.98%). The weight loss varied between 0.24 to 4.77%, pH ranged from 6.00 to 6.95, and browning index increased to 0.95 during storage. Changes of gas composition were lower in cut leaf than whole leaf. Aerobic bacteria (4.9-8.0 log CFU/g), yeast (not detected), mold (-3.5 log CFU/g), and total coliforms (5.0-8.0 log CFU/g) were assessed in the samples. Thus, overall quality of kale and red beet leaves with minimal processing showed satisfactory results when stored for 7 days.

Comparison of Quality of ESL and non-ESL Milk Depending upon Sensory Evaluation (관능검사를 통한 ESL(Extended Shelf Life)우유와 non-ESL우유의 품질 비교)

  • Han, Mi-Yeong;Jung, Byeong-Mun;Kim, Eung-Ryul;Kim, Wan-Sik;Jung, Hu-Gil;Chun, Ho-Nam;Yeo, Gyeong-Eun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • This study was conducted to correlate the quality depending upon sensory evaluation of ESL(extended shelf life) and non-ESL milk during the shelf life. The most important quality assurance is sensory evaluation for dairy products. ESL and non-ESL milk were stored at $5^{\circ}C$ and $10^{\circ}C$ for 14 days. In order to compare physicochemical and sensory properties, pH, TA(titratable acidity), protein, fat, lactose, FFA(free fatty acid), and other organoleptic characteristics were measured. The results showed that physicochemical properties were not significantly changed during storage. On the other hand, the freshness was affected by storage conditions. The most freshness depending upon sensory evaluation was monitored at 5 days storage. Descriptive and acceptability analysis showed that more acceptable milk was ESL milk than non-ESL milk because of off-flavor and after taste of non-ESL milk. According to these results, it was shown that the freshness of milk products depends on sensory. And ESL milk was fresher than non-ESL milk after storage.

  • PDF

Usefulness of Automated PCR Test for the Detection of Mycobacterium Tuberculosis in Fresh Biopsy Tissues (신선조직 검체에서 결핵균 검출을 위한 자동화 중합효소연쇄반응 검사의 유용성)

  • Choi, Woo Soon;Shin, So Young;Kim, Jong Ok;Kim, Myung Sook;Lee, Hye Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Background: Although there have been several studies regarding the clinical value of an automated TB-PCR study using sputum, bronchial washing, and other body fluid samples for the detection of pulmonary tuberculosis, there are only a few reports on the use of fresh tissue samples. Materials and methods: The acid-fast bacilli stain(AFB), tuberculosis culture, automated TB-PCR study, and histopathology examination were performed in 42 fresh tissue samples. Results: Among the 42 cases, 18 cases were diagnosed with tuberculosis based on the clinical findings. Sixteen of the 18 cases were TB-PCR positive and of these 16 cases, only 2 cases were positive in the AFB stain or culture study. However, all 18 cases showed the histopathology findings of chronic granulomatous inflammation that was compatible with tuberculosis. Based on the clinical findings, the sensitivity, specificity, positive predictability, and negative predictability of the automated TB-PCR study were 88.9%, 100%, 100%, and 92.3% respectively. Conclusion: An automated TB-PCR assay is an important diagnostic tool for diagnosing tuberculosis in fresh tissue samples.

Microbial Contamination in a Facility for Processing of Fresh-Cut Leafy Vegetables (신선편이 채소류 가공작업장 내 시설 및 제품의 미생물 오염 실태)

  • Kim, Byeong-Sam;Lee, Hye-Ok;Kim, Ji-Young;Yoon, Doo-Hyun;Cha, Hwan-Soo;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.573-578
    • /
    • 2009
  • Microbial contamination levels in a fresh-cut leafy vegetable processing plant were evaluated. Total plate counts of samples collected from the walls, equipment, and raw materials ranged from $10^1{\sim}10^2$ CFU/100 $cm^2$, $10^0{\sim}10^4$ CFU/100 $cm^2$, and $10^4{\sim}10^6$ CFU/g, respectively. No coliforms were detected on walls; however, equipment and raw materials contained coliforms in concentrations ranging from ND (not detected)to $10^2$ CFU/100 $cm^2$ and $10^4{\sim}10^5$ CFU/g, respectively. Additionally, total plate counts for falling and floating bacteria in the processing plant were $10^0{\sim}10^1$ CFU/plate and $10^1{\sim}10^3$ $CFU/m^3$, respectively. Pathogenic microorganisms such as Escherichia coli, Salmonella spp, Staphylococcus aureus, or Listeria monocytogenes were not detected on walls, equipment, or raw materials. Overall, the results of this study indicate that hygiene control in the fresh-cut processing plant should be improved.

Microbial Risk Assessment for Mixed Vegetable Salad and Fresh and Frozen Fruits Distributed in Korea (국내 유통 중인 혼합채소샐러드 및 신선·냉동과일의 미생물 오염실태 조사)

  • Park, Hyun-Jin;Lee, Jeong-Eun;Kim, Sol-A;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.324-330
    • /
    • 2021
  • In this study, the microbial levels on mixed vegetable salads, fresh fruits, and frozen fruits distributed in Korea were comparatively analyzed by food group, region, and quarter. Samples were collected from big markets in large cities from 2018 to 2019 and used for microbiological analysis. The levels of aerobic bacteria for mixed vegetable salads, fresh fruits, and frozen fruits were 6.48, 5.07, and 3.78 log CFU/g, respectively. As a result of analyzing the quarterly contamination levels of aerobic bacteria, the first quarter contamination level was 5.12 log CFU/g while the second quarter showed 6.26 log CFU/g, the third quarter 5.73 log CFU/g, and the fourth quarter 4.42 log CFU/g. A higher number of aerobic bacteria was observed in the second and third quarters when the temperature was higher. There was no difference in the number of bacteria by region. The levels of the coliform group were 1.98 - 3.93 log CFU/g in all samples, and Escherichia coli was detected at 1.38 log CFU/g in 3 out of 27 mixed vegetable salads. Since the mixed vegetable salad and fresh fruit used in this study exceeded the standard (3 log CFU/g) for unheated foods and E. coli was detected in three fresh fruits, stricter hygiene management in the manufacturing stage of salads and fresh fruit is required.

축산상식 - 담근먹이 만들기

  • 축산물등급판정소
    • KAPE Magazine
    • /
    • s.163
    • /
    • pp.20-20
    • /
    • 2010
  • 목초 및 사료 재배시에는 수확물이 일시에 생산되므로 이들을 조제 저장하여 연중 균형 있는 조사료의 공급체계 확립이 필요하다. 담근먹이는 신선한 자료를 중 균형 있게 급여할 수 있고 좁은 면적에 많은 양을 저장할 수 있다. 또 조제 및 저장 중 양분 손실이 건조 조제시에 비해 적다.

  • PDF

Effects of Harvest Seasons on Quality and Microbial Population of Fresh-cut Iceberg Lettuce (수확시기가 신선편이 결구상추의 품질 및 미생물수에 미치는 영향)

  • In, Byung-Chun;Kim, Ji-Gang;Nimikeatkai, Hataitip;Lee, Jung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 2010
  • This study was conducted to investigate the effect of harvest seasons on quality and microbial population at different steps of production chain of fresh-cut iceberg lettuce. Iceberg lettuces harvested in May, June, July, October, and December were processed following industrial practices, and stored at $5^{\circ}C$ for 9 days. For microbial measurement, samples were taken from each of the following steps: harvest, transport, pretreatment, cutting, 1st-washing, 2nd-washing, and day 3, 6, and 9 of storage. Iceberg lettuce cultivated in protect house and harvested in May and October showed higher $CO_2$ levels in the packages and electrolyte leakages than lettuce harvested in June, July and December. Microbial population of raw materials harvested in July was highest (6.76 log), and microbial growth rate during storage was highest in samples harvested in May. Lettuce harvested in June had better quality and microbial safety compared to other lettuces. Although lettuce harvested in October and December had less microbial population in either raw materials or processed products, those samples had inferior quality due to off-odor development and severe browning. Therefore, it is required to maintain quality and ensure microbial safety to distribute fresh-cut lettuce with high quality and safety throughout the year.