• 제목/요약/키워드: 신뢰성 있는 인터넷 서비스

검색결과 291건 처리시간 0.018초

연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법 (A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.127-141
    • /
    • 2017
  • 인터넷과 모바일 관련 기술의 발전과 기기의 보급은 물리적 공간의 제약을 극복하게 하고, 다양한 상품과 서비스를 소비자에게 제공함으로써, 소비자에게 선택의 폭을 넓히는 기회를 제공하는 반면, 많은 시간과 노력을 기울이고도 소비자가 자신의 기호에 적합한 품목을 선택하기 힘들어지는 부작용을 낳았다. 이에 따라, 기업은 추천 시스템을 활용하여 소비자가 원하는 품목을 더 쉽게 찾는 수단을 제공하고 있다. 상품 간의 연관성을 통계적으로 분석하는 연관 규칙 마이닝 기법은 직관적인 형태의 척도를 규칙과 함께 제공함으로써, 이로부터 도출된 규칙에 포함된 품목 간의 관계를 이해하고, 이를 추천에 적용하기 쉽다는 강점을 갖는다. 그러나, 서로 다른 규칙의 척도가 일관되게 어느 한 쪽의 규칙이 더 우위에 있음을 알려주지 못한다면, 수많은 품목 중 추천에 적합한 품목을 적절히 선별해내기 힘든 상황이 발생한다. 본 연구에서는 추천 상품의 순위를 결정할 수 있도록 연관 규칙 마이닝 기법에 회귀분석모형을 보완적으로 적용하는 방안을 제시하고자 수행되었다. 연관 규칙 마이닝에서 보편적으로 사용되고 있는 지지도, 신뢰도, 향상도를 활용하여 모형을 구현함으로써, 직관적으로 이해하기 쉬울 뿐만 아니라, 실무에서도 활용하기 쉬운 방안을 제시하고자 하였다. 국내 최대규모의 온라인 쇼핑몰의 주문 데이터를 활용한 실험을 통해, 제안된 모형으로부터 얻어진 추천 점수를 기반으로 추천상품을 결정하고, 이를 추천에 적용함으로써 추천 적중률을 향상시킬 수 있음을 보였다. 특히, 최근 모바일 상거래가 빠르게 확산됨에 따라, 제한된 화면에 한정된 수의 추천 품목을 제시해야 하는 상황에서 적합한 추천 기법임을 확인할 수 있었다.