• Title/Summary/Keyword: 신뢰성 예측

Search Result 2,018, Processing Time 0.032 seconds

원전 고온구조재의 크리프 수명예측 신뢰성 평가 기술

  • Kim, U-Gon
    • Journal of the KSME
    • /
    • v.55 no.10
    • /
    • pp.26-30
    • /
    • 2015
  • 이 글에서는 제4세대 원전 고온구조재료인 Gr. 91강을 대상으로 하여 장시간 크리프 수명을 예측하고 파단수명을 확률적 신뢰도를 가지고 평가할 수 있는 방법에 대해 실 예제를 통하여 서술한다.

  • PDF

GEANT4, SPENVIS 를 이용한 STEIN 검출기의 배경계수 예측

  • Jeon, Jong-Ho;Park, Seong-Ha;Kim, Yong-Ho;Seon, Jong-Ho;Jin, Ho;Lee, Dong-Hun;Lin, Robert P.;Immel, Thomas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.230.2-230.2
    • /
    • 2012
  • 경희대학교에서 제작중인 초소형 위성 TRIO-CINEMA (TRiplet Ionosphere Observatory-Cubesat for Ion, Neutral, Electron and MAgnetic fields)에 탑재될 입자검출기 STEIN (SupraThermal Electron, Ion, Neutral)은 정전 편향기를 이용하여 4~300keV의 대전입자 혹은 중성입자들을 분리하여 검출하도록 이루어져있다. CINEMA 운용 궤도에서는 STEIN 정전 편향기를 통하지 않고 검출기 내부로 들어오는 입자들로부터 생기는 배경계수가 포함되어 검출될 것으로 예상되므로 STEIN 검출기의 결과값의 신뢰성을 높이기 위해 배경계수값을 예측할 필요성이 있다. 본 연구에서는 SPENVIS (The Space Environment Information System)를 통해 CINEMA 운용 궤도에 존재하는 입자들의 유량을 계산하였고 GEANT4 (GEometry ANd Tracking)를 통해 CINEMA 운용 궤도상의 STEIN의 외부 환경을 모사하여 배경계수값을 예측하였다. 향후 STEIN의 측정값에 배경계수값을 차감한다면 측정값의 신뢰성이 높아질 것으로 기대된다.

  • PDF

The Expectation for Material Properties of Microstructure by Application of Dynamic Response Characteristics (동적 응답 특성을 활용한 미세구조의 물성 분포에 대한 예측)

  • Lee, Jeong-Ick;Yeo, Moon-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.580-586
    • /
    • 2008
  • This paper addresses the prediction of the material property continuities of a microstructure. Prediction was made by measuring the dynamic responses distribution of the fabricated materials used in the microstructures. When these distributional material properties were used in estimating the mechanical performances of microstructures, the differences between the computer simulation and the experimental result of microstructures could be reduced and their reliability design could be made.

A Study on the Analysis of Validity and Reliability of the Delphi Forecasting in Korea (델파이 기술예측의 타당성과 신뢰성 분석에 관한 연구)

  • Gwon, Seong-Hoon;Hong, Soon-Ki
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.97-117
    • /
    • 2009
  • The Delphi is a popular technique for forecasting based on the opinions of experts. It is important to know how valid and reliable the technique is. In this paper, we analyze accuracy and precision of the Delphi in IT and BT of Korea, and also discuss the relationship between them. As a result of the analysis, the accuracy and precision of the forecasts partly have significant differences according to their area and degree of expertise. Besides, significant correlation between the accuracy and precision of forecasts with high expertise is found. The result indicates that the precision of forecasts can be a criterion of the accuracy of them.

  • PDF

The Study on Intelligent Inventory Management System (지능형 재고관리 시스템에 관한 연구)

  • 허철회;손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.92-95
    • /
    • 2001
  • 제조업체에서의 재고관리 시스템은 그 적용 목적과 상황에 따라 다양한 형태가 있다. 그러나, 완제품 생산에 필요한 원자재 및 부품의 안정된 공급을 위하여 수요 예측과 경제성, 신뢰성, 운용성이 우수한 시스템 기술이 요구되고 있다. 본 논문에서는 효율적인 재고관리를 위하여 신경망을 이용한 지능적인 예측 재고관리 시스템을 설계하고, 신경망의 학습알고리즘을 적용하여 제품생산에 요구되는 자재들의 재고를 예측하고 효율적으로 관리할 수 있는 방법을 제안한다.

  • PDF

A Stock trend Prediction based on Explainable Artificial Intelligence (설명 가능 인공지능 기법을 활용한 주가 전망 예측)

  • Kim, Ji Hyun;Lee, Yeon Su;Jung, Su Min;Jo, Seol A;Ahn, Jeong Eun;Kim, Hyun Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.797-800
    • /
    • 2021
  • 인공지능을 활용한 주가 예측 모형을 실제 금융 서비스에 도입한 사례가 많아지고 있다. 주식 데이터는 일반적인 시계열 데이터와 다르게 예측을 어렵게 하는 복합적인 요소가 존재하며 주식은 리스크가 큰 자산 상품 중 하나이다. 주가 예측 모형의 활용 가능성을 높이기 위해선 성능을 향상시키는 것과 함께 모델을 해석 가능한 형태로 제시해 신뢰성을 향상시킬 필요성이 있다. 본 논문은 주가 전망 결정 방법에 따른 예측 결과를 비교하고, 설명 가능성을 부여해 모형 개선했다는 것에 의의가 있다. 연구 결과, 주가 전망을 장기적으로 결정할수록 정확도가 증가하고, XAI 기법을 통해 모형의 개선 근거를 제시할 수 있음을 알 수 있었다. 본 연구를 통해 인공지능 모형의 신뢰성을 확보하고, 합리적인 투자 결정에 도움을 줄 수 있을 것으로 기대한다.

An Analysis on the Reliability of Technology Forecasting using the Delphi Method (델파이 방법을 이용한 기술예측의 신뢰도 분석)

  • 윤윤중;이종일
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 1998.05a
    • /
    • pp.14-14
    • /
    • 1998
  • 기술추세분석(trend analysis)이나 특허분석(patent analysis) 등과 같이 객관적 자료를 이용하는 여타 기술예측방법과 달리, 델파이 방법은 해당 분야에 대한 전문가들의 식견(또는 주관적 평가)을 예측의 유일한 원천으로 하고 있다는 점에서 예측결과에 대한 신뢰도 분석을 강하게 요구하고 있다. 이러한 점에 착안하여 본 연구에서는 최근에 실시된 산업기술예측(1998) 자료를 이용하여 델파이 방법을 이용한 기술예측의 신뢰도 분석을 실시하였다. 이러한 분석은 전문가들의 예측결과에 대해 내적 일관성의 유지 여부와, 전문도가 상이한 집단간에 예측 결과의 차이가 있는지 여부를 중심으로 이루어졌으며 그 결과는 다음과 같다. 첫째, 응답 결과에 내적 일관성이 있는지 여부를 검정한 결과 생물·정밀화학분야를 제외한 모든 분야에서 일관성을 지니고 있는 것으로 나타나고 있다. 두번째, 전문도가 높은 응답자들일수록 자신의 예측결과를 확신하고는 있으나, 전문도가 낮은 응답자들에 비해 예측결과에 이견이 큰 것으로 분석되었으며, 마지막으로 전문도가 높은 응답자들과 그렇지 않은 응답자들 사이에 기술과제의 예상 실현시기에 대해서는 거의 차이가 없는 반면, 합의(consensus)의 정도는 큰 차이가 있는 것으로 나타났다. 이러한 분석결과는 델파이 방법을 이용한 기술예측을 설계하는 데 있어 몇가지 시사점을 제공하고 있다. 첫번째로 기술예측시 전문가들의 예측결과에 대해 내적 일관성이 존재하는 지 여부를 검증할 수 있도록 예측과정을 설계하는 것이 바람직하다는 것이다. 이러한 설계과정은 델파이 방법이 예측결과를 검증할 만한 객관적인 장치를 지니지 못하고 있다는 점에서 더욱 필요하다고 하겠다. 두번째는 정보로서의 가치가 큰 전문도가 높은 응답자들의 예측결과를 활용하기 위해서는, 예측결과에 대한 이들의 합의(consensus)의 정도를 높일 수 있는 방안이 마련되어야 한다는 것이다. 델파이의 최종 라운드가 진행된 이후 이들에 대해서만 추가적인 라운드를 실시하거나, 예측과정에서 이들에게 관련 정보를 제공하는 것도 하나의 대안이 될 수 있을 것이다.

  • PDF

A Study on Welding Joint Parts of Heavy Equipment (중장비용 용접구조물의 신뢰성 평가)

  • Ko, Jung;Cho, Yong-Geun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.111-111
    • /
    • 2002
  • 당사 제품인 건설 중장비용 대형 용접 구조물에 대하여, 설계단계부터 구조해석 및 초도품에 대한 Rig Test, 실차 시험 등 여러 단계를 거쳐 내구성을 평가하고 있다. 그러나 용접품 특성상 수명 평가 및 예측이 용이하지 않아 특히 내구성 개선 또는 효율 증대를 위한 경량화 등의 필요에 따른 설계 변경시 시행착오를 거치는 경우가 많다. 이에 개발 일정의 지연, 시험 비용의 증대 등이 불가피하고, 보증 수명의 증대를 통한시장 확대 등에 있어서도 애로가 있다. 또한 기존 Rig Test의 경우도 실제 사용환경과의 차이 등으로 인해 필드에서의 사용 수명을 예측하는데 한계가 있다. 이에 당 센터에서는 통계적 분석을 통한 사용 조건의 DB 구축과 제품 품질 DB의 구축 및 통합을 통하여 제관품의 특성을 반영한 용접 구조물의 가속 수명 평가법의 신뢰도 향상과 시장 목표에 부합하는 최적 설계 달성을 위한 독자적 Tool을 개발하고 있으며, 이에 대한 첫 번째 과제로 기확보 데이터에 대한 상관관계를 분석하였다.

  • PDF

Failure Time Prediction Capability Comparative Analysis of Software NHPP Reliability Model (소프트웨어 NHPP 신뢰성모형에 대한 고장시간 예측능력 비교분석 연구)

  • Kim, Hee-Cheul;Kim, Kyung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.143-149
    • /
    • 2015
  • This study aims to analyze the predict capability of some of the popular software NHPP reliability models(Goel-Okumo model, delayed S-shaped reliability model and Rayleigh distribution model). The predict capability analysis will be on two key factors, one pertaining to the degree of fitment on available failure data and the other for its prediction capability. Estimation of parameters for each model was used maximum likelihood estimation using first 80% of the failure data. Comparison of predict capability of models selected by validating against the last 20% of the available failure data. Through this study, findings can be used as priori information for the administrator to analyze the failure of software.

Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model (ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발)

  • Jin-Young Kim;Sumya Uranchimeg;Ji-Moon Yuk;Chan Ho Park;Boo Kyoung Park;Hee Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF