• Title/Summary/Keyword: 신뢰성 시험(reliability test)

Search Result 873, Processing Time 0.028 seconds

Study on Direct Tensile Properties and Reliability Review of Steel Fiber Reinforced UHPC (강섬유 보강 UHPC의 직접인장 특성 및 신뢰성 검토에 관한 연구)

  • Park, Ji Woong;Lee, Gun Cheol;Koh, Kyung Taek;Ryu, Gum Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.125-132
    • /
    • 2018
  • In this study, a direct tensile test was planned to identify the tensile performance of UHPC, and the irregularity of cracks, which is a problem of the direct tensile test, was complemented through the introduction of notches at the center of a specimen. In this regard, a number of specimens divided by batch to reduce the deviation of direct tensile test values were fabricated to present reference data with respect to highly reliable direct tensile strength values. In addition, the mechanical properties and reliability of the specimens were examined under the curing conditions of the specified design strength of 120MPa for the steel fiber reinforced concrete with 1.5% fiber volume fraction, which is most suitable for the field application. As a result, the deviation of averages by batch between compressive strength and direct tensile strength did not show a large difference, and all cracks occurred within 20mm in the direct tensile test. At the 95% confidence interval of the direct tensile strength, the range was considerably small in the mean and the standard deviation, and there was no significant difference depending on the curing conditions. The results confirmed that a stable direct tensile test was performed, and highly reliable results were obtained through the fabrication of specimens by batch and test progress.

Development of The Transporting System for The Automatic Carrying and Arming of Test Ammunition (시험용 탄약의 자동 이송 및 장전을 위한 탄약 운반시스템 개발)

  • Lee, Jeong-Ho;Kim, Dong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.156-163
    • /
    • 2019
  • In this paper, we present the process of developing an automatic carrying and arming system for testing ammunition. When carrying out shooting tests at a domestic rifle range, most of the ammunition operations are carried out by human manpower The series of test processes, such as transporting, arming and firing of heavy munitions, is repeated by employing human. If the ammunition is loaded via manpower, then problems can occur such as loss of reliability of test results, musculoskeletal disorders of humans and also safety accidents can occur. To address these problems, an automated system was developed for the transport and operation of ammunition. This paper covers the design, manufacture and operation of the developed system. In addition, this study validated the effectiveness of the system as compared to the human operation. Our results show that the developed system can be easily adapted to testing ammunition at a domestic rifle range.

Truncated Sequential Test Plan under Weibull Distribution (와이블 분포에서의 종결형 축차시험방안)

  • 정해성;차명수;오근태
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Sequential test plans are characterized by decision rules for accepting or rejecting compliance, or continuing the test at my test time. They are determined by selected values of risks and discrimination ratio. The sequential test plans in the international standard such as MIL-HDBK-781A are based on the assumption that the underlying distribution of times between failures is exponential. In this paper, sequential test plans are extended to the Weibull distribution case. Simulation studies are performed to examine the reasonability in this extension.

  • PDF

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.

Evaluation on Reliability of High Temperature Lead-free Solder for Automotive Electronics (자동차 전장 보드용 고온 무연 솔더의 신뢰성 평가)

  • Ko, Yong-Ho;Yoo, Se-Hoon;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • In this study, the reliability of thermal shock, thermal cycle, and complex vibration test at high temperature were examined for 3 types of lead-free solder alloys, Sn-3.5Ag, Sn-0.7Cu and Sn-5.0Sb. For the reliability test, daisychained BGA chips with ENIG-finished Cu pad was assembled with the three lead-free solders on OSP-finished PCBs. Among the 3 types solder alloys, Sn-3.5Ag solder alloy showed the highest degradation rate of electrical resistance and joint strength. On the other hand, Sn-0.7Cu solder alloy had high stability after the reliability tests.

Mechanical Reliability Evaluation of Sn-37Pb Solder/Cu and Sn-37Pb Solder/ENIG Joints Using a High Speed Lap-shear Test (고속 전단시험법을 이용한 Sn-37Pb/Cu 와 Sn-37Pb/ENIG 솔더 접합의 기계적신뢰성 평가)

  • Jeon, Seong-Jae;Hyun, Seung-Min;Lee, Hoo-Jeong;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.250-255
    • /
    • 2008
  • This study utilized a high speed lap-shear test to evaluate the mechanical behavior of Sn-37Pb/Cu and Sn-37Pb/Electroless Nickel immersion Gold under bump metallization solder joints under high speed loading and hence the drop reliability. The samples were aged for 120 h at different temperatures ($120^{\circ}C,\;150^{\circ}C,\;170^{\circ}C$) and afterward tested at different displacement rates (0.01 mm/s to 500 mm/s) to examine the effects of aging on the drop life reliability. The combination of the stress-strain graphs captured from the shear tests and identifying a fracture mode dominant in the samples for different strain rates leads us to conclude that the drop reliability of solder joints degrades as the aging temperature increases, possibly due to the role of the IMC layer. This study successfully demonstrates that the analysis based on a high speed lap-shear test could be critically used to evaluate the drop reliability of solder joints.

  • PDF

Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders (Sn3.5Ag와 Sn0.7Cu 무연솔더에 대한 고온 진동 신뢰성 연구)

  • Ko, Yong-Ho;Kim, Taek-Soo;Lee, Young-Kyu;Yoo, Sehoo;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.31-36
    • /
    • 2012
  • In this study, the complex vibration reliability of Sn-3.5Ag and Sn-0.7Cu having a high melting temperature was investigated. For manufacturing of BGA test samples, Sn-3.5Ag and Sn-0.7Cu balls were joined on BGA chips finished by ENIG and the chips were mounted on PCB finished OSP by using reflow process. For measuring of resistance change during complex vibration test, daisy chain was formed in the test board. From the results of resistance change and shear strength change, the reliability of two solder balls was compared and evaluated. During complex vibration for 120 hours, Sn-0.7Cu solder was more stable than Sn-3.5Ag solder in complex vibration test.

Development of Mixed Reliability Demonstration Test Plans (혼합형 신뢰성 실증시험계획의 개발)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.170-175
    • /
    • 2015
  • Reliability demonstration tests (RDT's) are widely employed in design verification and process validation stages of industry. New mixed attribute-variable RDT plans that compromise demerits of the corresponding zero and zero or one failure plans which are common in practice are developed for the exponential distribution. The proposed mixed plans are compared with the typical RDT plans in terms of probability of acceptance and expected test termination time. A numerical example is provided to illustrate the mixed plans and a procedure to extend these plans to the Weibull distribution with known shape parameter is also presented.

The Study on The Production Testing Equipment for the Improvement of System Test Reliability in FCS (사격통제장치 시스템 시험의 신뢰성 향상을 위한 생산시험장비에 관한 연구)

  • Choi, Kyungjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.139-147
    • /
    • 2016
  • This study described the design scheme for each step of the production test for the Fire Control System(FCS) of the K-55A1 PIP business of Hanwha Thales since 2011. From the time of receipt of the product It is necessary to improve the FCS's reliability by using the Unit Test, burn-In test, System Test. FCS of K-55A1 acts as a 'head' that control the self-propelled howitzer, and connected with the electrical and physical connection of self-propelled howitzer's multiple unit (Inertial navigation systems(IN), Muzzle Velocity Radar (MVR)) for the normal operation without an inch of error in operating. We designed the production testing equipment automatically as much as possible and designed with the environment similar to the self-propelled howitzer. by using this production testing equipment, It should help for the strengthen national defense of the Republic of Korea.

A Study on Optimal Design of Accelerated Life Tests (가속수명시험의 최적 설계)

  • Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.57-72
    • /
    • 2007
  • This paper suggests an approach for using ALTA 7 PRO to design accelerated life test plans. Conducting a accelerated life test requires finding life distributions at different stress levels and determining an appropriate life-stress relationship. Moreover, a test plan needs to be developed. In its optimal test plan, stress levels are determined and the proportions of test units are assigned at each stress level so that asymptotic variance of the maximum likelihood estimate of a (log) percentile of the life distribution at the design stress is minimized. Examples are presented for usage.

  • PDF