기존 진화 신경망 연구는 마지막 세대에서 최적의 신경망을 찾는 연구가 대부분이었다. 하지만 이 방법은 마지막 세대의 다른 신경망들이 진화와 학습을 통해 얻은 정보를 모두 무시한다. 최근에는 가능한 많은 정보를 이용해서 보다 뛰어난 성능의 시스템을 구축하기 위해, 마지막 세대의 모든 신경망들의 정보를 결합하는 다중 신경망에 관한 연구가 진행되고 있다. 효과적인 다중 신경망을 구축하기 위해서는 다양한 신경망들이 다중 신경망을 구성해서 서로 보완해 주도록 하여야 하는데, 아직까지 효과적인 다중 신경망 구축 방법은 나오지 않고 있다. 본 연구는 유전자 연산에서 다양한 해를 찾기 위해 사용하는 종분화를 이용해서 다양한 신경망들이 생성되도록 하는 다중 신경망 구축방법을 제안하고 실험을 통해 이 방법의 효용성을 보인다.
동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.
본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.
본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.
본고에서는 최근 활발하게 연구되고 있는 심층 학습에 대하여 알아본다. 기계 학습 분야 중 하나인 심층 학습은 인공 신경망의 한 형태인 심층 신경망을 통해 구현된다. 심층 신경망은 기존 다층 신경망의 구조와 거의 유사한 학습 구조를 가지지만, 학습 과정에서 발생하는 부정확한 학습 문제를 해결함으로써 최근의 성공을 이끌어낼 수 있었다. 본고에서는 다층 신경망이 가지고 있던 문제점들을 심층 신경망에서 어떻게 극복하였는지 심층 신경망의 발전 과정을 통해 알아보고, 기계 학습의 기본개념을 바탕으로 이를 설명하여 비전문가들의 이해를 돕고자 하였다.
본 논문에서는 새로운 블록기반 신경망을 제안하고 블록기반 신경망의 패턴류 성능을 확인하였다. 블록기반 신경망은 4개의 가변 입출력을 가지는 블록을 기본 구성요소로하고 있으며 블록들의 2차원배열 형태로 이루어진다. 블록기반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬수 있는 새로운 신경망 모델이다. 블록 기반 신경망의 구조와 가중치를 재고성 가능 하드웨어(FPGA)의 비트열에 대응시키고 유전자 알고리즘에 의하여 전역최적화를 하여 구조와 가중치를 최적화한다. 유전 알고리즘에 의하여 설계된 블록기반 신경망을 비선형 결정평면을 가지는 여러 학습패턴에 적용하여 패턴분류 성능을 확인하였다.
연속 음성 인식을 위한 신경망과 학습속도를 줄이기 위한 연결강도 초기화에 관해 다루고 있다. 우선 음소를 여러개의 그룹으로 나눈 후 각각의그룹에 대한 음소를 인식하는 신경망과 자신의 그룹을 판별하는 VGNN 으로 신경망을 구성한다. 여기서 구성되는 신경망은 각각의 음소를 인식하는 출력을 낼 뿐 아니라, 입력이 자신의 그룹에 속하는지 그렇지 않은지를 판별하는 출력을 낸다. 이런 신경망을 학습시키는 데 상당한 시간이 걸리므로 이 신경망의 학습속도를 줄이기 위해 학습 데이터를 사용하여 신경망의 연결 강도를 초기화한다.
본 논문에서는 신경망과 유전자 알고리즘의 장점을 결합하고, 개선된 유전자 알고리즘 기반의 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 살펴 본다. 유전자 알고리즘을 이용한 신경망 학습은 비선형 함수를 이용하여 발생시킨 모의 자료를 통하여 수행하고 학습 수렴의 정도와 학습 속도 등을 비교할 수 있는 모의실험 결과를 일반 신경망 학습 결과와 함께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 신경망 제어기가 일반 신경망 학습 결과보다 수렴 정확도 및 학습 속도에서 더 좋은 결과를 나타내 주고 있다.
이 논문은 지능형 정보검색을 위한 신경망 시스팀을 구축하는데 있어서 신경망을 어떻게 디자인하는 것이 가장 이상적인지에 관해 기술한다. 구체적으로 말하면, 신경망 위상 (Network Topology) 와 학습매개변수 (Learning Parameter)들이 신경망 시스팀 성능에 어떠한 영향을 미치는 지에 대해 문헌조사를 통해 검토하고 있다. 그 결과 신경망 위상과 학습 매개변수는 정보검색을 위한 신경망 시스팀 효율성에 강하게 영향을 미치고 있으므로 신경망 설계시 이 요소들을 신중히 고려해서 결정해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.