• Title/Summary/Keyword: 신경회로망 알고리즘

Search Result 489, Processing Time 0.027 seconds

The Hangeul image's recognition and restoration based on Neural Network and Memory Theory (신경회로망과 기억이론에 기반한 한글영상 인식과 복원)

  • Jang, Jae-Hyuk;Park, Joong-Yang;Park, Jae-Heung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.17-27
    • /
    • 2005
  • In this study, it proposes the neural network system for character recognition and restoration. Proposes system composed by recognition part and restoration part. In the recognition part. it proposes model of effective pattern recognition to improve ART Neural Network's performance by restricting the unnecessary top-down frame generation and transition. Also the location feature extraction algorithm which applies with Hangeul's structural feature can apply the recognition. In the restoration part, it composes model of inputted image's restoration by Hopfield neural network. We make part experiments to check system's performance, respectively. As a result of experiment, we see improve of recognition rate and possibility of restoration.

  • PDF

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network (원전 금속파편시스템에 신경회로망 적용연구)

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.227-230
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.

  • PDF

Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks (셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법)

  • Shin, Yoon-Cheol;Park, Yong-Hun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2003
  • In this paper, Associative Memory with Cellular Neural Networks classifies and recognizes image patterns as an operator applied to image process. CNN processes nonlinear data in real-time like neural networks, and made by cell which communicates with each other directly through its neighbor cells as the Cellular Automata does. It is applied to the optimization problem, associative memory, pattern recognition, and computer vision. Image processing with CNN is appropriate to 2-D images, because each cell which corresponds to each pixel in the image is simultaneously processed in parallel. This paper shows the method for designing the structure of associative memory based on CNN and getting output image by choosing the most appropriate weight pattern among the whole learned weight pattern memories. Each template represents weight values between cells and updates them by learning. Hebbian rule is used for learning template weights and LMS algorithm is used for classification.

Vector Quantization Compression of the Still Image by Multilayer Perceptron (다층 신경회로망 학습에 의한 정지 영상의 벡터)

  • Lee, Sang-Chan;Choe, Tae-Wan;Kim, Ji-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.390-398
    • /
    • 1996
  • In this paper, a new image compression algorithm using the generality of the multilaryer perceptron is proposed. Proposed algorithm classifies image into some classes, and trains them through the multilayer perceptron. Multilayer perceptron which trained by the above method can do compression and reconstruction of the nontrained image by the generality. Also, it reduces memory size of the side of receiver and quantization error. For the experiment, we divide Lena image into 16 classes and train them through one multilayer perceptron. The experimental results show that we can get excellent reconstruction images by doing compression and reconstruction for Lena image, Dollar image and Statue image.

  • PDF

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF

Normalized Recognition Method using Characteristic Vector of Speech Signal (음성의 특징벡터를 사용한 정규화 인식수법)

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.616-618
    • /
    • 2011
  • 본 논문에서는 음성의 특징벡터를 추출하여 음성인식을 위한 인식 알고리즘을 제안한다. 본 논문에서 제안하는 방법은 사람의 음성을 정규화하여 시간지연신경회로망을 사용하여 음성인식을 하는 인식 알고리즘이다. 본 논문에서는 시간지연신경회로망을 이용하여 입력되는 음성정보를 일정시간 동안 학습시킨 후에 새로이 입력되는 정보를 인식하는 수법이다. 본 실험에서는 음성인식률에 의하여 본 알고리즘의 유효성을 확인한다.

  • PDF

Disease Recognition on Medical Images Using Neural Network (신경회로망에 의한 의료영상 질환인식)

  • Lee, Jun-Haeng;Lee, Heung-Man;Kim, Tae-Sik;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Design of an Action Selector for Soccer Robot Systems Using Multilayer Neural Networks (다층신경회로망을 이용한 축구 로봇시스템의 행동선택기 설계)

  • Son, Chang-Woo;Kim, Do-Hyun;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.658-660
    • /
    • 1999
  • 본 논문에서는 축구로봇 시스템에서 상위 레벨 제어기에 해당하는 행동선택기를 다층신경회로망을 이용하여 설계한다. 축구로봇 시스템에서 로봇의 속도가 빠른 상태에서 제어가 가능하도록 로봇의 행동레벨을 설정하고 주어진 동적 상황에 대해 여러 가지 상황변수를 정의하여, 각 상황에 가장 효율적이며 최적의 행동을 선택하도록 한다. 각 로봇이 목표점으로 이동할 때 어떠한 행동을 선택하여 어떻게 움직이느냐에 따라 로봇은 같은 위치에서 목표점을 이동하더라도 이동경로가 달라진다. 따라서, 로봇축구 경기 상황을 나타내는 상황 변수들을 입력으로 하는 다층신경회로망을 사용하여 출력으로 행동을 판단하여 실행하는 알고리즘을 제안하고 그를 위한 하드웨어와 시뮬레이터 도구를 제작한다. 역전파 알고리즘을 통해 신경망을 학습하고 학습된 데이터를 실험에 적용한다.

  • PDF

A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구)

  • Kim, Hong-Bok;Kim, Jeong-Keun;Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • This paper deals with a nonlinear system modelling using neural network and genetic algorithm Application q{ neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. in this paper, we optimize a neural network structure using genetic algorithm The genetic algorithm uses binary coding for neural network structure and searches for an optimal neural network structure of minimum error and fast response time. Through an extensive simulation, the optimal neural network structure is shown to be effective for identification of nonlinear system.