• 제목/요약/키워드: 신경회로망 모델

검색결과 326건 처리시간 0.029초

뇌파 비교를 통한 안정 상태평가에 관한 연구 (A Study of Stability Evaluation Method Using EEG)

  • 서인석
    • 디지털콘텐츠학회 논문지
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2006
  • 본 논문에서는 전두엽과 두정엽의 4채널 뇌파를 이용하여 인간의 쾌적성 평가를 위한 알고리즘을 개발하고자 한다. 알고리즘은 선형 예측 분석과 신경회로망으로 구성되며, 많은 피검자들의 템플릿(template)을 활용한다. 먼저 다양한 실험 환경을 조성하여 쾌적 및 불쾌적한 상태의 뇌파를 수집하였다. 그리고 나서 개발된 알고리즘을 이용하여 쾌적성 평가 실험을 수행하였으며, 전두엽의 a파 전력비(power ratio)를 이용한 기존의 감성 평가 방법과 성능을 비교해 보았다. 온도와 습도를 이용한 쾌적성 평가를 위해 여러 방법으로 수집된 뇌파를 통해 적은 채널을 이용하면서 감성을 평가할 수 있는 전극의 위치를 확인하고자 실시한 여러 가지 조합의 2채널, 4채널 실험에서는 쾌적성 평가 결과가 제시한 task와 80%가 일치하여 Heller의 감정 모델에 근거한 4채널이 가장 변별력을 나타내는 전극의 위치임을 알 수 있었다. 또한 기존의 a파 전력을 통하여 뇌의 활성 영역을 구분하여 감성을 평가하는 방법에서는 상당히 저조한 성능을 나타내어 감성과의 상관성을 확인할 수 없었다.

  • PDF

적응형 뉴로-퍼지 기법을 이용한 수문자료 결측치 추정에 관한 연구 (A Study on the Estimation of Missing Hydrological Data Using Adaptive Network-based Fuzzy Inference System(ANFIS))

  • 신희재;이태희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.264-264
    • /
    • 2020
  • 최근 기후변화로 우리나라는 과거에 비해 태풍이나 국지성 집중호우 및 가뭄 등 극심한 수문현상이 빈번하게 발생하고 그 피해가 더욱 커지고 있는 추세이다. 특히 우리나라의 경우 산지가 많으며 대부분의 하천이 유역면적이 작고 유로연장이 짧아 단시간에 유출이 발생하며 수문학적 특성이 연중 큰 편차를 보이고 있다. 이러한 이상기후에 따른 수문현상 파악 및 피해 경감을 위해 신뢰성 있는 수문자료는 매우 중요하다. 따라서 수문자료에 대한 품질관리는 필수적이지만 자료 결측 및 오측에 대한 신뢰성 높은 품질관리가 이뤄지지 못하고 있는 실정이다. 현재 수위자료의 결측이 발생한 경우 해당 관측소의 수위 자료를 사용해 선형보간 및 운형자법으로 수정하거나 상·하류 관측소의 관계를 이용하여 회귀분석을 통해 자료 결측의 수정 및 보완을 수행하는 등 담당자의 주관적 판단에 의존하고 있다. 본 논문에서는 신뢰성 높은 수문자료의 결측치 보완 및 예측을 위한 방안을 제시하고자 상류의 관측소의 수문자료를 이용한 하류의 단시간 수문 자료예측에 관한 연구를 수행하였다. 이를 위해 자료지향형 모델인 적응형 뉴로-퍼지 기법(Adaptive Network-based Fuzzy Inference System, ANFIS)을 이용한 모형을 적용하였다. 기존의 연구에서 가장 일반적으로 사용되는 물리적 모형은 수문자료를 활용하여 수위 및 유출을 산정함에 있어 매개변수의 결정이 어렵고 많은 오차들을 내포하고 있다. 본 연구에서 사용한 ANFIS는 입력자료와 출력자료만을 고려하여 구축할 수 있기 때문에 자료 수집단계에서 유역의 물리적 자료 및 지형 자료와 같은 방대한 양의 자료 수집이 필요가 없다. 이후 모형이 구축이 된다면 입·출력 자료만을 이용하여 신뢰성 높은 결과를 획득할 수 있지만 입력 자료의 품질에 따라 결과가 좌우되기 때문에 자료의 구성이 매우 중요하다. 본 연구에서는 ANFIS를 통해 무주남대천 유역의 무주군(여의교) 관측소의 수위자료를 입력자료를 사용하여 하류에 위치한 무주군(취수장) 관측소의 수문자료의 결측 보완 및 예측하는 모형을 구축하고 모형의 구조 변화를 통해 가장 정확도 높은 모형을 결정하였다.

  • PDF

수질 모니터링을 위한 유해 물질 유입에 따른 생물체의 행동 반응 분석 및 인식 (Analysis and Recognition of Behavioral Response of Selected Insects in Toxic Chemicals for Water Quality Monitoring)

  • 김철기;차의영
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.663-672
    • /
    • 2002
  • 본 논문에서는 자동 추적 시스템을 이용하여 카바메이트 계열의 농약인 카보퓨란의 치명적인 투여에 대하여 반자연적인 조건에서 반응하는 깔따구의 움직임을 관찰하였다. 4령기에 있는 깔따구를 $6cm\times{7cm}\times{2.5cm}$ 크기의 서식 장소와 $18^\circ{C}$의 수온, 명기와 암기를 각각 10시간, 14시간의 조건에서 관찰을 하였다. 추적 시스템은 깔따구 몸체의 부분 점들을 탐지하여 추적하도록 하였다. 모든 실험은 반자연적인(semi-natural) 상태에서 진행되었으며 약제 카보퓨란(Carbofuran 0.1mg/l) 처리 전 후 이틀씩 모두 4일에 걸쳐서 연속적으로 진행되었다. 실험 결과 약제의 처리후에 압축된 지그제그 형태로 나타나는 "떨림 현상"과 같은 비정규적인 행동들이 종종 나타남을 알 수 있었다. 약제 처리된 종들의 행동 변화를 탐지하기 위하여, 웨이블릿 분석이 다른 움직임 패턴들을 특징화하기 위하여 사용되었다. 이산 웨이블릿에 기반하여 추출된 파라미터들은 약제처리 전후의 움직임에 대한 다른 유형의 패턴들을 표현하기 위하여 인공 신경망을 통하여 학습되었다. 이러한 웨이블릿과 인공 신경망의 통합 모델은 특징화된 움직임 패턴들의 발생 시점을 탐지할 수 있었으며, 수질 모니터링을 위한 독성 물질의 유입을 자동으로 탐지할 수 있는 도구로써 사용될 수 있음을 알 수 있었다.을 알 수 있었다.

SVM기반의 선택적 주의집중을 이용한 중첩 패턴 인식 (Recognition of Superimposed Patterns with Selective Attention based on SVM)

  • 배규찬;박형민;오상훈;최용선;이수영
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.123-136
    • /
    • 2005
  • 본 논문에서는 신경회로망보다 우수한 성능을 보이는 학습 이론인 SVM을 기반으로, 인간의 인지 과학에서 많은 연구가 이루어지고 있는 선택적 주의집중을 응용한 중첩 패턴 인식 시스템을 제안한다. 제안된 선택적 주의집중 모델은 SVM의 입력단에 주의집중층을 추가하여 SVM의 입력을 직접 변화시키는 학습을 하며 선택적 필터의 기능을 수행한다. 주의집중의 핵심은 학습을 멈추는 적절한 시점을 찾는 것과 그 시점에서 결과를 판단하는 주의집중 척도를 정의하는 것이다. 지지벡터는 주변에 존재하는 패턴들을 대표하는 표본이므로 입력 패턴이 초기상태일 때 주의집중을 하고자 하는 클래스의 가장 가까운 지지벡터를 기준으로 그 지지벡터와의 거리가 최소가 되었을 때 주의집중을 멈추는 것이 적절하다. 일반적인 주의집중을 적용하면 주의집중 척도를 정의하기가 난해해지기 때문에 변형된 입력이 원래 입력의 범위를 넘지 않는다는 제약조건을 추가하여 사용할 수 있는 정보의 폭을 넓히고 새로운 척도를 정의하였다. 이때 사용한 정보는 변형된 입력과 원래 입력의 유클리드 거리, SVM의 출력, 초기상태에 가장 가까웠던 히든뉴런의 출력값이다. 인식 실험을 위해 USPS 숫자 데이터를 사용하여 45개의 조합으로 중첩시켰으며, 주의집중을 적용시켰을 때 단일 SVM보다 인식 성능이 월등히 우수함을 확인하였고, 또한 제한된 주의집중을 사용하였을 때 일반적 주의집중을 이용하는 것 보다 성능이 더 뛰어났음을 확인하였다.

다층 퍼셉트론의 학습 성능 개선을 위한 일반화된 시그모이드 베이시스 함수 (Generalized Sigmidal Basis Function for Improving the Learning Performance fo Multilayer Perceptrons)

  • 박혜영;이관용;이일병;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권11호
    • /
    • pp.1261-1269
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.

(2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계 (Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm)

  • 장병희;김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 연구에서 $(2D)^2$ PCA 알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터을 설계한다. CCD 카메라로 야간에 이미지를 취득할 경우 조도가 낮기 때문에 인식을 수행하기 어려운 수준의 이미지가 취득되는 문제점이 발생한다. 따라서 본 논문에서는 나이트 비전 카메라를 이용하여 야간 얼굴을 취득하였다. 또한 얼굴과 비얼굴 이미지 영역에서 야간 얼굴 이미지를 검출하기 위해 Ada-Boost 알고리즘을 사용한다. 그리고 히스토그램 평활화를 이용하여 이미지의 왜곡 현상을 최소화 한다. 이렇게 얻어진 고차원 이미지를 저차원으로 축소하기 위해 $(2D)^2$ PCA 알고리즘을 사용했다. 다항식 기반 RBFNNs을 이용한 지능형 패턴 분류 모델을 통하여 얼굴인식을 수행 한다. 마지막으로 차분진화 알고리즘을 사용하여 파라미터를 최적화 한다. $(2D)^2$ PCA를 최적 RBFNNs 기반 나이트비전 얼굴인식 시스템의 성능 평가를 위하여 IC&CI Lab data를 사용하고 실제 얼굴 인식 시스템을 설계한다.