• Title/Summary/Keyword: 신경회로망 모델

Search Result 326, Processing Time 0.034 seconds

A Study on Electromyogram Signals Recognition Technique using Neural Network and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 근전신호 인식기법)

  • Shin, Chul-Kyu;Lee, Sang-Min;Lee, Eun-Sil;Kwon, Jang-Woo;Jang, Young-Gun;Hong, Seung-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.176-183
    • /
    • 1998
  • A new recognition technique using neural network coupled with Genetic Algorithms (GAs) was proposed. This technique concentrate on efficient Electromyography signal recognition through out improving neural network's several demerits. GAs paly a role of selecting Multilayer Perceptron's optimized initial connection weights by its typical global search. Electro Myography signal was pre-processed with Hidden Markov Model (HMM) in order to refect its time-varying property into input pattern except other features such as Zero Crossing Number(ZCN) and Integral Absolute Value (IAV). Results for 6 primitive motions show that the suggested technique has better performance in learning time and recognition rates than already established ordinary methods. Moreover, it performed stable recognition without convergence into a local minimum.

  • PDF

A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns (복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망)

  • 우용태;이남일;안광선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.2028-2042
    • /
    • 1994
  • Properly defining signal and noise in a self-organizing system like ART(Adaptive Resonance Theory) neural network model raises a number of subtle issues. Pattern context must enter the definition so that input features, treated as irrelevant noise when they are embedded in a given input pattern, may be treated as informative signals when they are embedded in a different input pattern. The ATR automatically self-scales their computational units to embody context and learning dependent definitions of a signal and noise and there is no problem in categorizing input pattern that have features similar in nature. However, when we have imput patterns that have features that are different in size and nature, the use of only one vigilance parameter is not enough to differentiate a signal from noise for a good categorization. For example, if the value fo vigilance parameter is large, then noise may be processed as an informative signal and unnecessary categories are generated: and if the value of vigilance parameter is small, an informative signal may be ignored and treated as noise. Hence it is no easy to achieve a good pattern categorization. To overcome such problems, a Coupled-ART neural network capable of modularized categorization of patterns is proposed. The Coupled-ART has two layer of tightly coupled modules. the upper and the lower. The lower layer processes the global features of a pattern and the structural features, separately in parallel. The upper layer combines the categorized outputs from the lower layer and categorizes the combined output, Hence, due to the modularized categorization of patterns, the Coupled-ART classifies patterns more efficiently than the ART1 model.

  • PDF

Monitoring of Recycling Treatment System for Piggery Slurry Using Neural Networks (신경회로망을 이용한 순환식 돈분처리 시스템의 모니터링)

  • Sohn, Jun-Il;Lee, Min-Ho;Choi, Jung-Hea;Koh, Sung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.127-133
    • /
    • 2000
  • We propose a novel monitoring system for a recycling piggery slurry treatment system through neural networks. Here we tried to model treatment process for each tank(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) in the system based on population densities of heterotrophic and lactic acid bacteria. Principle component analysis(PCA) was first applied to identify a relation between input(microbial densities and parameters for the treatment) and output, and then multilayer neural networks were employed to model the treatment process for each tank. PCA filtration of input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combinatorial data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-61
    • /
    • 2006
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy nile as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Comparative Study of Modeling of Hand Motion by Neural Network and Kernel Regression (손 동작을 모사하기 위한 신경회로망과 커널 회귀의 모델링 비교 연구)

  • Yang, Hac-Jin;Kim, Hyung-Tae;Kim, Seong-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.399-405
    • /
    • 2010
  • The grasping motion of a person's hand for a simplified degree of freedom was modeled by using the photographic motion measured by a high-speed camera. The mathematical expression of distal interphalangeal (DIP) motion was developed by using relation models of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) motions to reduce the degree of freedom. The mathematical expression for humanoid-hand operation obtained using a learning algorithm with a neural network and using a kernel regression model were compared. A feasible model of hand operation was obtained on the basis of comparative data analysis by using the kernel regression model.

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

A Study on the Implementation of Hopfield Model using Array Processor (어레이 프로세서를 이용한 홉필드 모델의 구현에 관한 연구)

  • 홍봉화;이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.94-100
    • /
    • 1999
  • This paper concerns the implementation of a digital neural network which performs the high speed operation of Hopfield model's arithmetic operation. It is also designed to use a look-up table and produce floating point arithmetic of nonlinear function with high speed operation. The arithmetic processing of Hopfleld is able to describe the matrix-vector operation, which is adaptable to design the array processor because of its recursive and iterative operation .The proposed method is expected to be applied to the field of real neural networks because of the realization of the current VLSI techniques.

  • PDF

(Fault Detection and Isolation of the Nonlinear systems Using Neural Network-Based Multi-Fault Models) (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장감지와 분류)

  • Lee, In-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2002
  • In this paper, we propose an FDI(fault detection and isolation) method using neural network-based multi-fault models to detect and isolate faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.