• Title/Summary/Keyword: 신경회로망 모델

Search Result 326, Processing Time 0.027 seconds

A Neural Network Approach to Modeling PCS Wave Propagation Loss Prediction Using 3D Digital Terrain Maps (지형데이터를 이용한 신경회로망 PCS 전파손실 예측모델)

  • 정성신;양서민;이혁준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.357-359
    • /
    • 1998
  • 무선 통신 환경에서 기지국 안테나를 떠난 전파가 수신안테나에 도달하는 과정 중에 발생하는 전파 손실은 매우 복잡한 비선형 함수이다. 본 논문에서는 신경회로망을 사용한 전파 손실 모델을 제안하고, 3차원 지형 데이터를 이용하여 전파 환경을 반영할 수 있는 특징을 추출하여 이를 신경회로망에 적용함으로써 전파손실 예측모델을 생성하는 방법을 소개한다. 각 필드 측정 데이터에 대한 특징 값을 이용하여 신경회로망을 학습하여 예측모델을 완성한다. 또한, 서울 도심 지역의 실제 PCS 서비스 환경에 대한 실험결과를 통해 제안하는 모델의 우수성을 보인다.

  • PDF

Personalized Research Agent System Based on User Model Neural Network (사용자 모델 신경회로망을 기반으로 한 사용자 중심의 리서치 에이전트 시스템)

  • 송종길;김유신;조영임
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.321-323
    • /
    • 1999
  • 본 논문에서는 사용자가 자신이 연구하고 있는 분야에 관련된 웹 문서를 스스로 찾아서 보여 주는 PReA 시스템을 구현한다. 사용자의 성향을 파악하기 위해서 미리 작성된 서지 정보데이터를 사용자가 사용하는 것을 관찰하여 사용자 모델 신경회로망을 구축한다. 사용자 모델 신경회로망은 단어의 부하와 단어 사이의 부하로 구성되어 있어서 사용자의 정보 요구의 의미를 나타낼 수 가 있다. 사용자 모델 신경회로망을 기반으로 질의어를 생성하고 웹문서를 검색하며 검색된 문서에 대해 순위를 정한다. 순위가 정해진 문서중 사용자가 선택한 문서와 선택하지 않은 문서는 각각 사용자 모델 신경회로망을 학습하는데 쓰이게 되며 오랜 시간 동안 사용함에 따라 회로망은 사용자의 성향에 적응하게 되어 보다 정확한 검색을 수행하게 된다.

  • PDF

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Cyclic Neural Network (순환결합형 신경회로망의 동적 상태천이 해석과 카오스 신호의 영향)

  • 김용수;박철영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.199-202
    • /
    • 2002
  • 신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 자기결합을 갖고 결합하중치가 비대칭인 순환결합형 신경회로망은 복수 개의 리미트사이클이 기억 가능하다는 것이 알려져 있다. 현재까지 이산시간 모델의 네트워크에 대한 상태천이 해석은 상세하게 이루어져 왔다. 그러나 연속시간 모델에 대한 해석은 네트워크 규모의 증가에 따른 급격한 계산량의 증가 때문에 연구가 그다지 활발하게 이루어지지 않고 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 연속시간모델 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하여 이산시간 모델에서 기억 가능한 리미트사이클과의 차이점을 분석한다. 또한 연속시간 네트워크 모델에 카오스 신호를 인가하여 리미트사이클간의 천이를 제어할 수 있는 가능성을 분석하여 동적정보처리에 네트워크를 응용할 수 있는 가능성을 검토한다.

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection (자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상)

  • 이현진;박혜영;이일병
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.326-338
    • /
    • 2003
  • The objective of a neural network design and model selection is to construct an optimal network with a good generalization performance. However, training data include noises, and the number of training data is not sufficient, which results in the difference between the true probability distribution and the empirical one. The difference makes the teaming parameters to over-fit only to training data and to deviate from the true distribution of data, which is called the overfitting phenomenon. The overfilled neural network shows good approximations for the training data, but gives bad predictions to untrained new data. As the complexity of the neural network increases, this overfitting phenomenon also becomes more severe. In this paper, by taking statistical viewpoint, we proposed an integrative process for neural network design and model selection method in order to improve generalization performance. At first, by using the natural gradient learning with adaptive regularization, we try to obtain optimal parameters that are not overfilled to training data with fast convergence. By adopting the natural pruning to the obtained optimal parameters, we generate several candidates of network model with different sizes. Finally, we select an optimal model among candidate models based on the Bayesian Information Criteria. Through the computer simulation on benchmark problems, we confirm the generalization and structure optimization performance of the proposed integrative process of teaming and model selection.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

인공 지능을 이용한 자율주행차량의 제어

  • 류영재;홍재영;임영철
    • 전기의세계
    • /
    • v.46 no.3
    • /
    • pp.20-25
    • /
    • 1997
  • 자율주행시스템은 복잡한 환경에서 효과적인 주행을 위해서 센서를 통해 주변의 정보를 수집하고 주변환경에 적절한 동작을 취해야 한다. 이러한 자율주행시스템에 지능적인 방법을 통하여 새롭게 제안한 방법을 서술하였다. 퍼지 논리를 이용하여 운전자와 같이 차량이 차선을 따라 주행하기 위한 퍼지 논리 제어기(FLC)가 설계되었다. 함축적인 차량모델을 기반으로 설계한 퍼지 논리 제어기가 복잡하고 정확한 차량모델을 기반으로 설계된 PID나 FSLQ 제어기와 동등한 성능을 발휘하였다. 인간의 운전방법을 학습할 수 있는 신경회로망을 이용하여 자율주행시스템에 적용하였다. 퍼지 신경회로망은 인간의 제어특성을 반영하도록 설계되었으며 자동으로 생성된 제어기는 퍼지 논리 제어나 신경회로망의 기법보다 우수한 성능을 발휘하였다. 퍼지 논리, 신경회로망, 유전자 알고리즘 등의 인간의 지능 모델에 기초를 둔 방법을 자율주행차량의 제어에 도입하므로써 기존의 자율주행시스템의 문제점을 극복하는데 주요한 역할을 하였다. 앞으로 퍼지 논리, 신경회로망, 유전자 알고리즘은 각각의 강점을 융합하거나, 고전적인 제어 알고리즘과 결합하므로써 더욱 우수한 성능을 발휘할 것으로 예상된다.

  • PDF

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

가우스 전위함수를 가지는 신경회로망 모델

  • O, Sang-Hun;Kim, Meong-Won
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.2
    • /
    • pp.39-50
    • /
    • 1990
  • 다층 퍼셉트론 신경회로망 모델이 여러가지 복잡한 문제를 역전파 학습에 의하여 해결할 수 있다고 보고된 후로, 이 모델을 이용한 응용분야의 연구가 활발하다. 그렇지만, 이 다층 퍼셉트론 모델은 오랜 학습시간이 필요하며, 또 분류경계가 입력층과 숨겨진 층간의 연결가중치에 의해 결정되는 초기하 평면의 조합으로 이루어지기 때문에, 숨겨진 층의 뉴런 수가 부족하면 분류경계를 제대로 나타낼 수 없게 된다. 이러한 단점들을 극복하기 위하여 숨겨진 층의 활성화 함수는 시그모이드 형태가 아닌 가우스 함수가 되도록 하고 이 가우스 함수들의 선형적 합에 의하여 출력층 뉴런들의 값이 결정되는, 즉, 가우스 함수가 출력층의 전위함수(potential function)가 되는 신경회로망이 여러번 제안되었다. 본 논문에서는 가우스 함수를 전위함수로 가지는 신경회로망 모델들에 대하여 이 모델들의 실제 응용 예와 함께 알아보겠다.