• Title/Summary/Keyword: 신경망 모델링

Search Result 333, Processing Time 0.034 seconds

Performance comparison between Black-Sholes equation and various Neural Network techniques for option pricing (옵션가격결정모형에 대한 블랙숄즈모형과 다양한 신경망 기법의 성능 비교)

  • Lee, Hyo-Seok;Lee, Hyeok-Sun;Choe, Hyeong-Jun;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.738-741
    • /
    • 2004
  • 최근 다양한 금융 데이터를 신경망 이론을 비롯한 최적화 기법을 통해 모델링 하려는 시도가 증가하고 있다. 이러한 시도는 블랙숄즈 모델이 가지고 있는 몇 가지 비현실적인 가정들을 극복할 수 있다는 점에서 성공적이다. 그러나 각각의 최적화 기법의 고유한 특성을 고려하지 못한 채 적용하여 성능면에서 큰 향상을 보이지 못하고 있다. 따라서 이론과 기법의 적용에 있어 금융데이터의 특성에 맞는 명확한 절차의 정의가 필요하다. 본 논문에서는 옵션의 가격결정에 적용 가능한 신경망 기법들을 제시하고 절차를 정의, 분석하고 그 성능을 블랙-숄즈 방정식과 비교한다. 비교 분석 결과는 블랙-숄즈 방정식에 의한 가격 오차와 최적화 기법을 통한 가격오차가 통계적으로 유의한 차이가 있는지 여부를 분석함으로써 유의성을 검증하였다.

  • PDF

Modeling Orientation-Selectivity using Recurrent Neural Networks without Attractors (끌개를 가지지 않는 순환 신경망을 이용한 방위 선택성 모델링)

  • Kim, Hoon-Hee;Ku, Bon-Woong;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.226-229
    • /
    • 2008
  • 방위 선택성(orientation selectivity)은 일차 시각 피질에 존재하는 심플 셀(simple cell)의 중요한 특성이다. 이 특성이 어떻게 구현되는가는 아직까지 정확하게 알려지지 않았다. 대표적인 기존 심플 셀의 이론 모델은 시각 자극의 인자마다 대응되는 끌개(attractor)를 가지는 순환 신경망(recurrent neural networks) 모델이 있다. 하지만 자극을 결정하는 인자의 범위는 무한대이므로 끌개 또한 무한대여야 한다는 문제점을 가지고 있다. 본 연구에서는 끌개를 가지지 않는 순환 신경망 모델을 이용하여 심플 셀의 특성을 보임으로서 기존 Recurrent 모델의 문제점을 해결하고 새로운 연구 방향을 제시하고자 한다.

  • PDF

Prediction and Analysis of Charge Density Using Neural Network (신경망을 이용한 전하밀도의 예측과 해석)

  • Kwon, Sang-Hee;Hwang, Bo-Kwang;Lee, Kyu-Sang;Uh, Hyung-Soo;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.111-112
    • /
    • 2007
  • Silicon nitride (SiN) 박막을 플라즈마 응용화학기상법을 이용하여 증착하였다. SiN박막의 전하밀도는 일반화된 회귀 신경망과 유전자 알고리즘을 이용하여 모델링하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. $SiH_4$ 유량변화에 따른 온도의 영향은 미미하였다. 그러나, 저 전력에서의 온도증가 (또는 저온에서의 전력의 증가)에 따라 전하밀도는 급격히 상승하였으며, 이는 [N-H]의 증가에 기인하는 것으로 해석되었다. $SiH_4$ 유량의 증가 (또는 고온에서의 전력의 증가)에 따라 전하밀도는 감소하고 있으며, 이는 [Si-H]의 증가에 기인하는 것으로 이해된다.

  • PDF

Spike Feature Extraction for Emotion Recognition based on Deep Neural Network (심층 신경망 기반 감정 인식을 위한 스파이크 특성 추출 기술)

  • An, Soonho;Kim, Jaewon;Han, Seokhyeon;Shin, Seonghyeon;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.158-159
    • /
    • 2019
  • 본 논문에서는 심층 신경망을 기반으로 하는 감정 인식을 위해 스파이크 특성을 추출하는 기술을 제안한다. 기존의 심층 신경망을 이용한 감정 인식 기술은 대부분 MFCC를 특성 백터를 사용한다. 그러나 프레임 단위의 연산인 MFCC는 높은 시간 해상도를 확보하기 어려워 시간적 특성의 영향을 받는 감정 인식에 한계가 있다. 이를 해결하기 위해 본 논문에서는 인간의 청각 필터를 모델링한 ERB에 따라 샘플 단위로 주파수의 특성을 나타내는 스파이크그램을 이용한 감정 인식 기술을 제안한다. 제안하는 방법이 감정 인식의 대표적 특성인 MFCC보다 높은 인식률을 제공하는 것을 확인하였다.

  • PDF

Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil (신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Kyung-Hyun;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the ability of neural network in modeling and predicting of the unsteady aerodynamic force coefficients of 2D airfoil with the data obtained from Euler CFD code has been confirmed. Neural network models are constructed based on supervised training process using Levenberg-Marquardt algorithm, combining this into genetic algorithm, hybrid genetic algorithm and the efficiency of the two cases are analyzed and compared. It is shown that hybrid-genetic algorithm is more efficient for neural network of complex system and the predicted properties of the unsteady aerodynamic force coefficients of 2D airfoil by the neural network models are confirmed to be similar to that of the numerical results and verified as suitable representing reduced models.

Research Trend of Cellular Automata in Brain Science Research (뇌과학 연구에서 셀룰라 오토마타의 연구 현황)

  • Kang, Hoon
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.441-447
    • /
    • 1999
  • 본 논문은 복잡 적응 시스템의 분석 및 모델링을 위해, 인공생명의 기본 패러다임인 셀룰라 오토마타를 선택하여, 무정형의 구조를 가지며 투명한 자료 전파 특성을 갖는 셀룰라 신경 회로망의 설계하고 개발하는데 중점을 두었다. 우선, 신경 회로망의 불규칙한 구조를 발생학적으로 다루어 무정형의 은닉층을 생성하고, 다윈의 진화론을 적용하여 구조적 진화 및 선택을 통해 최적화된 신경 회로망을 설계하였다. 주변 셀의 상태를 감지하여 자신의 상태를 수정해나가는 방식의 셀룰라 오토마타의 투명한 신호 전파 모델로 자료 및 오차의 역전파에 적용하도록 고안하였고, 라마르크의 용불용설을 활용한 오차의역전파 학습 알고리즘을 유도하였다. 이러한 복잡 적응계의 학습 과정을 유도하여 시뮬레이션에서 그 타당성을 입증하였다. 시뮬레이션에서는 신경 회로망의 XOR 문제와 다중 입력 다중 출력 함수에 대한 근사화 문제를 풀었다.

  • PDF

Design of Artificial Neural Networks for Fuzzy Control System (퍼지제어 시스템을 위한 인공신경망 설계)

  • Jang, Mun-Seok;Jang, Deok-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.626-633
    • /
    • 1995
  • It is vary hard to identify the fuzzy rules and tune the membership functions of the fuzzy inference in fuzzy systems modeling, We propose a fuzzy neural network model which can automatically identify the fuzzy rules and tune the membership functions of fuzzy inference simultaneously using artificial neural networks, and modify backpropagation algorithm for improving the convergence. The proposed method is verified by the simulation for a robot manipulator.

  • PDF

Modeling of plamsa etch process using a radial basis function network (레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoung-Young;Kim, Byung-Whan;Lee, Byung-Teak
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1129-1133
    • /
    • 2004
  • 반도체공정 최적화에 소요되는 시간과 경비를 줄이기 위해 신경망 모델이 개발되고 있다. 주로 역전파 신경망을 이용하여 모델이 개발되고 있으며, 본 연구에서는 Radial Basis Function Network (RBFN)을 이용하여 플라즈마 식각공정 모델을 개발한다. 실험데이터는 유도결합형 플라즈마를 이용한 Silicon Carbide 박막의 식각공정으로부터 수집되었다. 모델개발을 위해 $2^4$ 전인자 (full factorial) 실험계획법이 적용되었으며, 모델에 이용된 식각응답은 식각률과 atomic force microscopy로 측정한 식각표면 거칠기이다. 모델검증을 위해 추가적으로 16번의 실험을 수행하였다. RBFN의 예측성능은 세 학습인자, 즉 뉴런수, width, 초기 웨이트 분포 (initial weight distribution-IWD) 크기에 의해 결정된다. 본 연구에서는 각 학습인자의 영향을 최적화하였으며, IWD의 불규칙성을 고려하여 주어진 학습인자에 대해서 100개의 모델을 발생하고, 이중 최소의 IWD를 갖는 모델을 선택하였다. 최적화한 식각률과 표면거칠기 모델의 RMSE는 각기 26 nm/min과 0.103 nm이었다. 통계적인 회귀모델과 비교하여, 식각률과 표면거칠기 모델은 각기 52%와 24%의 향상된 예측정확도를 보였다. 이로써 RBFN이 플라즈마 공정을 효과적으로 모델링 할 수 있음을 확인하였다.

  • PDF

Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm (신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발)

  • Lee, Jung Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.9-18
    • /
    • 2020
  • The development of a large-scale thermal power plant control simulator consists of water/steam systems, air/combustion systems, pulverizer systems and turbine/generator systems. Modeling is possible for all systems except mechanical turbines/generators. Currently, there have been attempts to develop neural network simulators for some systems of a boiler, but the development of simulator for the whole system has never been completed. In particular, autoTuning, one of the key technology developments of all power generation companies, is a technology that can be achieved only when modeling for all systems with high accuracy is completed. The simulation results show accuracy of 95 to 99% or more of the actual boiler system, so if the field PID controller is fitted to this simulator, it will be available for fault diagnosis or auto-tuning.

A Hierarchical Neural Network for Printed Hangul Character Recognition (인쇄체 한글문자 인식을 위한 계층적 신경망)

  • 조성배;김진형
    • Korean Journal of Cognitive Science
    • /
    • v.2 no.1
    • /
    • pp.33-50
    • /
    • 1990
  • Recently, neural networks have been proposed as computaional models for hard prlblems that the brain appears to solve easily. This paper proposes a hierarchical network which practically recognizes printed Hangul characters based on the various psychological stueies. This system is composed of a type classification netwotk and six recognition networks. The former clessifier input character images into one of the six thper by their overall sturcture, and the latter further classify them into character code. Extperiments with most frequently used 990 printed hangul characters conform the superiority of the propsed system. After all, neural nework approach turns out to be very reasonable through a comparison with statistical classifier and an analysis of mis-classification and generalization capability.