• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.035초

항로표지 고장진단 및 예측기술 개발 연구

  • 김환;임성수
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2021년도 추계학술대회
    • /
    • pp.54-56
    • /
    • 2021
  • 다양한 소스로부터 수집되고 연동되는 데이터를 모델링하는 기술로 그래프 데이터베이스를 활용한 분석 기법이 각광받고 있다. 이 연구에서는 항로표지에서 관측되는 상태 및 주변 정보를 모델링하고, 고장진단 및 예측에 적용할 수 있는 기계학습 기법을 소개한다.

  • PDF

순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구 (A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation)

  • 윤지형;정재원;장백철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.21-33
    • /
    • 2022
  • 최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.

실시간 전기정보 전송을 위한 순환망 알고리즘 (Recurrent Networks for Real-time Electrical Transmission)

  • 김종만;김영민;김원섭;신동용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.255-257
    • /
    • 2008
  • 초고속 전기정보의 전송 시대와 U-정보전자시대에 응용하는 최신 정보기기와 의료기기 및 군사정보의 실시간 전송을 위하여 많은 실시간 알고리즘과 모델링의 연구가 필수적이다. 또한 원격지에 많은 전기 및 전력정보를 비선형적 특성이 있는 환경하에서도 정보의 오차가 없이 실시간으로 전송하는 기술은 현대 정보사회에서 해결해야 할 매우 중요한 요소중에 하나이다. 이러한 내용으로 수행되어지는 신경회로망을 이용한 실시간 모델링을 제안하고자 한다. 이와 관련한 일반적인 방법으로 역전파 학습 알고리즘을 들 수 있다. 파라미터에도 덜 민감하며, 특히 온라인으로 인식과 제어가 가능하도록 수렴속도를 향상 시켜야하는 새로운 모델의 필요성이 요구된다. 본 연구에서는 기존의 신경회로망이 가지고 있는 여러 단점들을 개선하고자 새로운 학습 알고리즘과 새로운 구조의 신경회로망을 제시한다. 또한 제시한 알고리즘을 이용하여 불규칙적 시스템 모델망과 다양한 센서 모델링 등에 연결하여 다양한 실험을 수행하여 그 결과를 보여 실시간 특성을 갖는 것을 입증해 보였다.

  • PDF

인공신경망기반의 최대 지진해일고 예측 (Prediction of maximum tsunami heights using neural network)

  • 송민종;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.484-484
    • /
    • 2023
  • 지진해일은 해저지진, 화산활동, 해저 산사태 등에 의해 발생되는 장주기 파랑이다. 지진해일은 발생빈도가 낮지만, 한번 발생하면 많은 에너지가 연안으로 유입되어 인명 및 재산피해를 야기 시킬 수 있다. 따라서, 과거 수십년동안 지진해일에 대한 연구는 지진해일의 역학관계를 이해하고, 이를 바탕으로 한 수치모델 개발에 초점을 두어 연구가 진행되어 왔다. 더욱이, 지진해일 실험적 연구는 많은 경제적 비용을 지불해야 하기에 수치모델개발 연구가 더욱 중점적으로 수행되어 왔다. 지리학적으로 우리나라는 지진해일에 안전하지 못하다. 하나의 예로, 1983년 5월 26일, 일본 서해안에서 발생한 지진해일은 동해로 전파되어 동해안 지역에 커다란 피해를 야기시켰다. 이 당시, 강원도삼척시 원덕읍에 위치한 임원항에서는 2명의 사상자와 2명의 부상자가 발생하였고, 당시 금액으로 약3억원의 재산피해가 발생하였다. 이 연구는 인공지능 기법 중 하나인 인공신경망을 이용하여 인명과 재산피해가 발생한 임원항에서 최대지진해일고를 예측하고자 하였다. 지진해일 수치모델은 뛰어난 정확도를 나타내는 반면, 결과를 산출하는데 상당한 시간을 필요로 한다. 이에 반해, 인공신경망은 수치모델과 유사한 정확도 및 결과를 신속하게 제공할 수 있다는 장점을 가지고 있다. 지진해일 인공신경망 모델 개발은 지진의 단층파라미터를 바탕으로 작성된 지진해일의 시나리오를 토대로 연구가 진행되었고, 우리나라 동해에 위치한 외해 관측 지점의 지진해일고 자료를 통해, 임원항에서의 최대 지진해일고가 예측되도록 개발되었다. 이를 위하여, 인공신경망의 학습 및 검증 과정을 수행하였고, 향후 발생 가능한 다양한 지진해일에 대해 평가함으로써, 인공신경망 모델의 예측성능을 확인하였다.

  • PDF

수정된 셀룰러 신경망을 이용한 에지 연결기법 (An Edge Linking Technique using a Modified Cellular Neural Networks)

  • 김호준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.292-294
    • /
    • 2002
  • 본 연구에서는 영상에서 효과적인 에지 연결(edge linking)을 위하여 기존의 셀룰러 신경망 구조에서 두 가지 유형의 시냅스 구조를 고려한 활성화 특성을 제안한다 제시하는 모델에서 노드들간의 측면 연결에 의한 상호 작용은 노이즈에 의한 에지 및 영상에서 추출된 비최대점(non-maximum)의 에지를 억제할 문만 아니라, 특정 노드의 원형 이웃(circular neighborhood)으로 그려되는 특징들 간의 상호 연관도를 반영하여 에지의 연결 효과를 이를 수 있게 한다. 이러한 과정은 에지를 표현하는 벡터형식의 각 성분에 대한 활성화 특성으로부터 정형화된 에너지 함수로 모델링하고 이에 대한 최적화 과정으로써 구현될 수 있다.

  • PDF

펄스드 플라즈마를 이용하여 증착한 SiN 박막 굴절률의 신경망 모델링 (Neural network modeling of SiN refractive index deposited using a pulsed plasma)

  • 이수진;김병환;우형수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.91-92
    • /
    • 2011
  • 펄스드 플라즈마를 이용하여 실리콘 나이트라이드를 증착 하였다. 소스전력과 duty ratio의 변화에 따른 이온에너지와 굴절률을 실험적으로 고찰하였으며, duty ratio의 감소에 따라 굴절률이 감소하였다. 이온에너지변수의 굴절률에의 영향은 신경망 모델을 개발하여 살펴보았다.

  • PDF

유전자 알고리즘과 일반화된 회귀 신경망을 이용한 박막 전하밀도 예측모델 (Modeling of Charge Density of Thin Film Charge Density by Using Neural Network and Genetic Algorithm)

  • 권상희;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1805-1806
    • /
    • 2007
  • Silicon nitride (SiN) 박막을 플라즈마 응용화학기상법을 이용하여 증착하였다. SiN박막의 전하밀도는 일반화된 회귀 신경망 (GRNN)을 이용하여 모델링하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. GRNN 모델의 예측수행은 유전자 알고리즘 (GA)을 이용하여 최적화하였다. 최적화한 GA-GRNN 모델은 종래의 GRNN 모델과 비교하여, 약55%정도의 예측성능의 향상을 보였다.

  • PDF

한글 인쇄체 문자인식 전용 신경망 Coprocessor의 구현에 관한 연구 (Study on Implementation of a neural Coprocessor for Printed Hangul-Character Recognition)

  • 김영철;이태원
    • 한국정보처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.119-127
    • /
    • 1998
  • 본 논문에서는 한글 인쇄체 인식 시스템의 실시간 처리를 위하여 인식 프로세스중 시간이 많이 걸리는 한글 문자 유형 분류 및 자소 인식 단계를 고속 처리할 수 있는 다층구조 신경망을 VLSI 설계 하였으며, 신경망과 호스트 컴퓨터간의 인터페이스와 신경망 제어를 담당하는 코프로세서 구조를 제안하였다. 이를 VHDL 모델링 및 논리합성을 통하여 설계하여 시뮬레이션을 통하여 구조와 동작 및 성능을 검증하였다. 실험결과 제안한 신경망 coprocessor는 기존의 소프트웨어 구현 인식 시스템의 유형 분류 및 자소 인식률과 대등한 성능을 보인 반면 고속의 인식속도를 보였다.

  • PDF

물리정보신경망을 이용한 파동방정식 모델링 전략 분석 (Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks)

  • 조상인;최우창;지준;편석준
    • 지구물리와물리탐사
    • /
    • 제26권3호
    • /
    • pp.114-125
    • /
    • 2023
  • 편미분방정식의 해를 구하기 위한 여러 수치해법들의 한계와 순수 데이터 기반 기계학습의 단점을 극복하기 위해 물리정보신경망(physics-informed neural network, PINN)이 제안되었다. 물리정보신경망은 편미분방정식을 손실함수 구성에 직접 활용하여 기계학습 훈련에 물리적 제약을 주는 기법으로 파동방정식 모델링에도 활용될 수 있다. 그러나 물리정보신경망을 이용하여 파동방정식을 풀기 위해서는 신경망 훈련 시 입력에 대한 2차 미분이 수행되어야 하고, 그 결과로 출력되는 파동장은 복잡한 역학적 현상들을 포함하고 있어 섬세한 전략이 필요하다. 이 해설 논문에서는 물리정보신경망의 기본 개념을 설명하고 파동방정식 모델링에 활용하기 위한 고려사항들에 대해 고찰하였다. 이러한 고려사항에는 공간좌표 정규화, 활성함수 선정, 물리손실 추가 전략이 포함된다. 훈련자료의 공간좌표를 정규화한 후 사용하면 파동방정식 모델링을 위한 신경망 훈련에서 초기 조건이 더 정확하게 반영되는 것을 수치 실험을 통해 보였다. 또한 신경망을 통한 파동장 예측에 가장 적절한 활성함수를 선정하기 위해 여러 함수들의 특성을 비교했다. 특성 비교는 각 활성함수들의 입력자료에 대한 미분과 수렴성을 중심으로 이루어졌다. 마지막으로 신경망 훈련 중 손실함수에 물리손실을 추가하는 두가지 시나리오의 결과를 비교하였다. 수치 실험을 통해 훈련 초기부터 물리손실을 활용하는 전략보다 초기 훈련단계 이후부터 물리손실을 적용하는 커리큘럼 기반 학습전략이 효과적이라는 결과를 도출했다. 추가로 이 결과를 물리손실을 전혀 사용하지 않은 훈련 결과와 비교하여 PINN기법의 효과를 확인하였다.

신경망을 이용한 초등학생 컴퓨터 활용 능력 예측 (Prediction of Elementary Students' Computer Literacy Using Neural Networks)

  • 오지영;이수정
    • 정보교육학회논문지
    • /
    • 제12권3호
    • /
    • pp.267-274
    • /
    • 2008
  • 신경망은 데이터로부터 반복적인 학습 과정을 통해 숨어 있는 패턴을 찾아내고, 새로운 데이터의 목표값에 대한 정확한 예측에 유용한 모델링 기법이다. 본 논문은 개인적인 특성, 가정 사회적 환경, 타 교과 성적을 이용하여 학생의 컴퓨터 활용 능력 예측을 위한 다층 인식모형(MLP) 신경망을 구축하였다. 신경망의 인식률은 예측 방법으로 널리 활용되고 있는 로지스틱 회귀분석 모델과 비교하였다. 개발한 신경망에 대한 실험 결과, 개인적인 특성이 학생들의 컴퓨터 활용 능력을 가장 잘 설명하는 요소이며, 반면 가정 사회적 환경은 가장 낮은 예측 요소임을 발견하였다. 또한 본 연구의 신경망 모델은 회귀분석보다 더욱 높은 인식률을 나타냈다.

  • PDF