• Title/Summary/Keyword: 신경망모델

Search Result 2,220, Processing Time 0.032 seconds

A Neural Network Model of Electric Differential System for Electric Vehicle (전지자동차용 전자식 차동 시스템의 신경망 모델)

  • 이주상;유영재;임영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.597-604
    • /
    • 2000
  • 본 연구에서는 전기자동차에 사용되는 전자식 차동 시스템의 신경망 모델을 제안한다. 차량이 곡선도로를 따라 주행할 경우 내측 바퀴와 외측 바퀴의 회전속도가 서로 달라야 진동이나 뒤틀림 없이 완만한 선회 주행을 할 수 있다. 전기자동차는 그 구조적 특성상 각각의 바퀴가 독립된 구동원을 갖는다. 이 때문에 일반 엔진 차량의 기어식 차동장치를 대신할 전자식 차동장치가 요구된다. 이러한 차동장치는 차량의 구조뿐만 아니라 차량의 주요 파라미터인 조향각 및 속도에 따라서 비선형적인 관계를 가지고 있어서 해석하기가 쉽지 않다. 따라서 이와 같은 비선형적인 관계 모델을 학습 능력을 가진 신경망에 의하여 모델링 함으로써 제어에 적용할 수 있다. 이를 실현하기 위해 제작한 전기자동차로 곡선도로를 주행하여 다양한 곡률과 주행속도에 따른 내측 외측 바퀴의 회전속도 데이터를 획득하고, 데이터의 비선형 특성을 고려한 차동 속도 제어기의 구조를 설계한다. 이 제어기에 적합한 모델은 신경망을 이용하여 실측 데이터를 학습시킴으로써 차동기능을 수행할 수 있는 제어기를 구현한다.

  • PDF

Development of the Prototype of the Approximate Analytical Model Using the Neural Networks (신경망을 이용한 근사 해석 모델의 원형 개발)

  • 이승창;박승권
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.273-281
    • /
    • 1997
  • In the structural analysis, artificial neural networks as a parallel computational model that is similar to the human brain and can self-organize complex nonlinear relationships without making assumptions is introduced. The purpose of this paper is to develop the Neural Network for Approximate Structural Analysis(NNASA) to predict the behaviour of the stub-girder system. As an initial stage, the paper presents the development of the prototype of NNASA based on the problem related to the deflection of a simple beam, and shows the verification of this model by two examples.

  • PDF

A Hand Gesture Recognition Method Using a Hybrid Neural Network (복합형 신경망을 이용한 손동작 인식기법)

  • Lee, Joseph-S.;Cho, Il-Gook;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.59-62
    • /
    • 2006
  • 본 논문에서는 CNN 모델과 WFMM 신경망의 특성을 상호 결합한 손동작 인식기법을 제안한다. 특징 추출 모듈로 사용된 CNN 모델은 움직임 정보에 기초한 특징지도상에서 특징의 위치 이동이나 왜곡에 의한 성능 저하를 개선시키는 계층간 연결구조를 갖는다. WFMM 신경망에 기반한 패턴 분류 모듈은 간결하고 강력한 학습기능을 지원하며, 학습된 신경망은 분류 능력을 그대로 유지한 상태에서 추가 학습이 가능하다는 장점을 지닌다. 또한 이 패턴 분류 모델은 학습패턴으로부터 특징의 상대적 중요도를 평가하는, 이른바 특징 선정 기법을 지원한다. 본 논문에서는 제안된 모델의 동작 특성과 학습 알고리즘을 소개하고, 손동작 인식문제에 적용한 실험을 통하여 이론의 타당성을 평가한다.

  • PDF

Neural Network Model of Electron Temperature for Hemispherical Inductively Coupled Plasma Equipment (반구형 유도결합플라즈마 장비의 전자온도 신경망 모델)

  • Kim, Su-Yeon;Kim, U-Seok;Kim, Byeong-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.165-166
    • /
    • 2007
  • 신경망을 이용하여 반구형 유도결합형 플라즈마 장비에 대한 전자온도의 예측모델을 개발하였다. 신경망으로는 Radial Basis Function Network을 이용하였고, 신경망의 예측성능은 유전자 알고리즘을 이용하여 최적화하였다. 체계적인 모델링을 위해 $2^4$ 전 인자 (Full Factorial) 실험획법을 이용하여 $Cl_2$ 플라즈마에서의 데이터를 수집하였다. 최적화된 전자온도 모델의 예측성능은 0.143 eV이었다. 개발된 모델을 이용하여 공정변수에 따른 예측온도의 영향을 고찰하였다. 소스전력과 압력의 변화에 따른 전자온도의 변화는 작았다. 그러나 $Cl_2$ 유량과 특히 척위치의 증가에 따른 전자온도의 증가는 현저하였으며, 이는 고이온밀도의 형성에 기인하는 것으로 해석되었다.

  • PDF

Scene Graph Generation with Graph Neural Network and Multimodal Context (그래프 신경망과 멀티 모달 맥락 정보를 이용한 장면 그래프 생성)

  • Jung, Ga-Young;Kim, In-cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.555-558
    • /
    • 2020
  • 본 논문에서는 입력 영상에 담긴 다양한 물체들과 그들 간의 관계를 효과적으로 탐지하여, 하나의 장면 그래프로 표현해내는 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 물체와 관계의 효과적인 탐지를 위해, 합성 곱 신경망 기반의 시각 맥락 특징들뿐만 아니라 언어 맥락 특징들을 포함하는 다양한 멀티 모달 맥락 정보들을 활용한다. 또한, 제안 모델에서는 관계를 맺는 두 물체 간의 상호 의존성이 그래프 노드 특징값들에 충분히 반영되도록, 그래프 신경망을 이용해 맥락 정보를 임베딩한다. 본 논문에서는 Visual Genome 벤치마크 데이터 집합을 이용한 비교 실험들을 통해, 제안 모델의 효과와 성능을 입증한다.

Explanation-focused Adaptive Multi-teacher Knowledge Distillation (다중 신경망으로부터 해석 중심의 적응적 지식 증류)

  • Chih-Yun Li;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.592-595
    • /
    • 2024
  • 엄청난 성능에도 불구하고, 심층 신경망은 예측결과에 대한 설명이 없는 블랙 박스로 작동한다는 비판을 받고 있다. 이러한 불투명한 표현은 신뢰성을 제한하고 모델의 대한 과학적 이해를 방해한다. 본 연구는 여러 개의 교사 신경망으로부터 설명 중심의 학생 신경망으로 지식 증류를 통해 해석 가능성을 향상시키는 것을 제안한다. 구체적으로, 인간이 정의한 개념 활성화 벡터 (CAV)를 통해 교사 모델의 개념 민감도를 방향성 도함수를 사용하여 계량화한다. 목표 개념에 대한 민감도 점수에 비례하여 교사 지식 융합을 가중치를 부여함으로써 증류된 학생 모델은 양호한 성능을 달성하면서 네트워크 논리를 해석으로 집중시킨다. 실험 결과, ResNet50, DenseNet201 및 EfficientNetV2-S 앙상블을 7 배 작은 아키텍처로 압축하여 정확도가 6% 향상되었다. 이 방법은 모델 용량, 예측 능력 및 해석 가능성 사이의 트레이드오프를 조화하고자 한다. 이는 모바일 플랫폼부터 안정성이 중요한 도메인에 걸쳐 믿을 수 있는 AI 의 미래를 여는 데 도움이 될 것이다.

A Prediction Model for Asthma using ANN (신경망을 이용한 천식 발병 예측 모델)

  • Choi, Hyun-Ju;Kim, Seung-Hyun;Wee, Kyu-Bum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.597-600
    • /
    • 2007
  • 신경망은 복잡한 데이터에서 일정한 패턴을 찾아 이를 분류하는 능력이 뛰어난 모델이다. 그러나 다량의 데이터가 입력으로 들어오면 연산에 오랜 시간이 걸리고 패턴을 찾기가 어려워진다는 한계가 있다. 본 연구에서는 set association과 의사결정나무를 이용하여 신경망에 입력되는 데이터의 수를 줄여서 다량의 데이터에도 적용 가능하며 예측의 정확도를 높인 신경망 모델을 구성하였다. 이 모델을 천식 관련 SNP 데이터에 적용하여 천식 발병 여부를 예측한 결과, 각각의 방법을 독립적으로 사용했을 때 보다 높은 예측 정확도를 얻었다.

Site Selection Method by AHP-based Artificial Neural Network Model for Groundwater Artificial Recharge (AHP 기반의 인공신경망 모델을 활용한 지하수 인공함양 후보지 선정 방안)

  • Kim, Gyoo-Bum;Choi, Myoung-Rak;Seo, Min-Ho
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.741-753
    • /
    • 2018
  • Local drought in South Korea has recently increased interest in the efficient use of groundwater and then induces a growing need to introduce artificial recharge of groundwater that stores water in sedimentary layer. In order to evaluate the potential artificial recharge sites in the alluvial basins in Chungcheongnamdo province, an AHP (Analytical hierarchy process) model consisting of three primary and seven secondary factors was developed in this study. In the AHP model, adding candidate sites changes final evaluation score through a mathematical calculation process. By contrast ANN (Artificial neural network) model always provides an unchanged score for each candidate area. Therefore, the score can be used as a selection criterion for artificial recharge sites. It is concluded that the possibility of artificial recharge is relatively low if the score of the ANN model is less than about 1.5. Further studies and field surveys on the other regions in Korea will lead to draw out a more applicable ANN model.

사물인터넷 환경의 이상탐지를 위한 경량 인공신경망 기술 연구

  • Oh, Sungtaek;Go, Woong;Kim, Mijoo;Lee, Jaehyuk;Kim, Hong-Geun;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.53-58
    • /
    • 2019
  • 최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.

Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks (지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측)

  • 최한고
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.139-147
    • /
    • 2003
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as signal prediction. This paper proposes the hybrid network, composed of locally(LRNN) and globally recurrent neural networks(GRNN), to improve dynamics of multilayered recurrent networks(RNN) and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The hybrid network consists of IIR-MLP and Elman RNN as LRNN and GRNN, respectively. The proposed network is evaluated in nonlinear signal prediction and compared with Elman RNN and IIR-MLP networks for the relative comparison of prediction performance. Experimental results show that the hybrid network performs better with respect to convergence speed and accuracy, indicating that the proposed network can be a more effective prediction model than conventional multilayered recurrent networks in nonlinear prediction for nonstationary signals.