• Title/Summary/Keyword: 신갈나무군락

Search Result 243, Processing Time 0.019 seconds

Morphological and Genetic Variation of Allium victorialis var. platyphyllum (산마늘(Allium victorialis var. platyphyllum)의 형태적.유전적 변이)

  • Bae, Kwan Ho;Hong, Sung Cheon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.13
    • /
    • pp.45-53
    • /
    • 1995
  • This research was conducted to investigate morphological and genetic variation of Allium victorialis val. platyphyllum which growed wild in Mt. Hambaek, Mt. Odae, and Ullungdo. The tree layer of Allium victorialis var. platyphyllum community in Mt. Hambaek and Mt. Odae was dominated by Quercus mongolica. The tree layer of Ullungdo generally consist of Fagus crenata var. multinervis, Acer triflorum, Sorbus commixta, and Tilia insularis. In the herb layer, Rumohra standishii, Trillium tschonoskii, and Lilium hansonii are common at Allium victorialis var. platyphyllum community in Ullungdo. The vegetation in Ullungdo was widely different from those in Mt. Hambaek and Mt. Odae by species composition. The result of Principal Component Analysis(PCA) and Canonical Discriminent Analysis of by the 8 characters showed that Allium victorialis var. platyphyllum could be classified into 2 groups: (one ; Mt. Hambaek and Mt. Odae, the other ; Ullungdo). In PCA, the major factors in the first principal component group was angle of leaf apex. Variation of band by isozyme GOT(glautamate oxaloaccetate transaminase) is similar between Mt. Hambaek and Mt. Odae. However, Ullungdo differed from Mt. Hambaek and Mt. Odae in variation of bands.

  • PDF

Characteristics of Breeding Birds Community in Relation to the Forest Environment in Deogyusan National Park (덕유산국립공원의 산림환경에 따른 번식기 조류군집 특성)

  • Yu, Jae-Pyoung;Jin, Seon-Deok;Kim, Hyoun-Sook;Lee, Joon-Woo;Paek, Woon-Kee;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.2
    • /
    • pp.132-144
    • /
    • 2011
  • We studied the forest environment and characteristics of bird community between April and September of 2010 on the Hyangjeokbong area(A), Baekryunsa area(B) and Anseong area(C), all in the Deogyusan National Park. Hyangjeokbong area of the high latitude ridge was characterized by the Taxus cuspidata and Abies koreana etc., and deciduous broadleaf forest species, such as the Quercus mongolica, with abundance of subalpine zone coniferous trees, the Hemerocallis fulva and the Rhododendron schlippenbachii, while the areas Baekryunsa and Anseong were primarily characterized by deciduous broadleaf forests, with the valleys showing Fraxinus mandshurica colonies. In terms of the DBH(diameter at breast height) of trees, between 11 and 20cm showed the highest frequencies, while over 30cm was the highest in Baekryunsa area and the lowest in Hyangjeokbong area. Furthermore, in terms of coverage in relation to layers, in Hyangjeokbong area, the coverage volume of the lower layer was very high, in Baekryunsa area, the coverage volume of the middle layer between 8 and 12m was the highest, and in Anseong area, the coverage volume of the upper layer over 18m was the highest. A total of 53 bird species were observed during the study period at the Deogyusan National Park. The numbers of species and density of areas were 25 species and 45.20 Ind./km for Hyangjeokbong area, 50 species and 58.63 Ind./km for Baekryunsa area and 35 species and 66.89 Ind./km for Anseong area, with Baekryunsa area showing the highest number of species and Anseong area showing the highest level of density. In terms of dominant species, in Hyangjeokbong area, Cettia diphone, along with species which inhabit in grassland and shrubs, were the dominant species, and species which live in the canopy layer, including the Aegithalos caudatus, were found to be dominant in Baekryunsa and Anseong areas. For guild structure, bush nesting guild and bush foraging guild species were the highest in all areas, and the hole nesting guild and the air foraging guild species showed the lowest proportion. This seems to be the result of the low number of trees with diameter at breast height of over 30cm, which results in the lack of nesting grounds for hole nesting guild species.

Spatial Genetic Structure at a Korean Pine (Pinus koraiensis) Stand on Mt. Jumbong in Korea Based on Isozyme Studies (점봉산(點鳳山) 잣나무임분(林分)의 개체목(個體木) 공간분포(空間分布)에 따른 유전구조(遺傳構造))

  • Hong, Kyung-Nak;Kwon, Young-Jin;Chung, Jae-Min;Shin, Chang-Ho;Hong, Yong-Pyo;Kang, Bum-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.43-54
    • /
    • 2001
  • Genetic differentiation of populations is resulted from the environmental and the genetic effects, and the interactions between them. Whereas, the major factors influencing to the genetic differentiation within populations are the gene flow induced by seed or pollen dispersial, the microsite heterogeneity, and the density-dependent distribution of individuals. For the purpose of studying spatial genetic structure and the distribution pattern of Korean pines(Pinus koraiensis), we set up one $100{\times}100m$ plot at a Korean pine stand in Quercus mongolica community on Mt. Jumbong in Korea. To estimate the coefficient of spatial autocorrelation as Moran's index and an analogue, simple block distance, isozyme markers were analyzed in 325 Korean pines. For 11 polymorphic loci observed in 9 enzyme systems, the average percentage of polymorphic loci, the observed and expected heterozygocity were 72.2% 0.200, and 0.251, respectively. It was revealed the excess of homozygotes was observed in the plot, which suggests that here may be more number of consanguineous trees than expected. On the basis of isozyme genotypes observed in this study, 325 trees were classified into 147 groups in which the maximum number of trees for one group was 34. From the distance class of 24-32m, the genetic heterogeneity began to increase. The variation of simple block distance against the growth performance by tree height and diameter also showed the same trend at 24~32m class. According to high fixation index(F=0.204), the spatial genetic structure within a stand, the analysis of the growth performance, and the distribution patterns of identical genotypes, we inferred that the genetic structure of a Korean pine stand in Mt. Jumbong has been maintained rather density-dependent mechanism than the gene flow, such as the pollen dispersial or the heavy input of seeds following the forest gaps. The genetic patchy size was determined between 24~32m, which suggests that the selection of individuals for the ex situ conservation of Korean pine in Mt. Jumbong may be desirable to be made with the spatial distance over 37 meters between trees.

  • PDF