• Title/Summary/Keyword: 식

Search Result 56,243, Processing Time 0.079 seconds

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Studies on Ecological Variation and Inheritance for Agronomical Characters of Sweet Sorghum Varieties (Sorghum vulgare PERS) in Korea (단수수(Sorghum vulgare PERS) 품종의 생태변이 및 유용형질의 유전에 관한 연구)

  • Se-Ho Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.1-43
    • /
    • 1971
  • Experiment I: The objective of this study was to know variation in some selected agronomic characters of sweet sorghum when planted in several growing seasons. The 17 different sweet sorghum varieties having various maturities, and plant, syrup and sugar types were used in this study which had been carried out for the period of two years from 1968 to 1969 at Industrial Crops Division of Crop Experiment Station in Suwon. These varieties were planted at an interval of 20 days from April 5 to August 25 both in 1968 and 1969. The experimental results could be summarized as follows: 1. As planting was made early, the number of days from sowing to germination was getting prolonged while germination took place early when planted at the later date of which air temperature was relatively higher. However, such a tendency was not observed beyond the planting on August 25. In general, a significant negative correlation was found between the number of days from sowing to germination and the average daily temperature but a positive correlation was found between the former and the total accumulated average temperature during the growth period. 2. The period from sowing to heading was generally shortened as planting was getting delayed. The average varietal difference in number of days from sowing to heading was as much as 30.2 days. All the varieties were grouped into early-, medium and late-maturing groups based upon a difference of 10 days in heading. The average number of days from sowing to heading was 78.5$\pm$4.5 days in the early-maturing varieties, 88.5$\pm$4.5 days in the medium varieties and 98.5$\pm$4.5 days in the late-maturing varieties, respectively. The early-maturing varieties had the shortest period to heading when planted from July 15 to August 5, the medium varieties did when planted before July 15 and the late-maturing varieties did when planted before June 5. 3. The relationship between the sowing date (x) and number of days from sowing to heading could be expressed in an equation of y=a+bx. A highly positive correlation was found between the coefficient of the equation(shortening rate in heading time) and the average number of days from sowing to heading. 4. The number of days from sowing to heading was shortened as the daily average temperature during the growth period was getting higher. Early-maturing varieties had the shortest period to heading at a temperature of 24.2$^{\circ}C$, medium varieties at 23.8$^{\circ}C$ and late-maturing varieties at 22.9$^{\circ}C$, respectively. In other words, the number of days from sowing to heading was shortened rapidly in case that the average temperature for 30 days before heading was 22$^{\circ}C$ to $25^{\circ}C$. It prolonged relatively when the temperature was lower than 21$^{\circ}C$. 5. There was a little difference in plant height among varieties. In case of early planting, no noticeable difference in the height was observed. The plant height shortened generally as planting season was delayed. Elongation of plant height was remarkably accelerated as planting was delayed. This tendency was more pronounced in case of early-maturing varieties rather than late-maturing varieties. As a result, the difference in plant height between the maximum and the minimum was greater in late-maturing varieties than in early-maturing varieties. 6. Diameter of the stalk was getting thicker as planted earlier in late-maturing varieties. On the other hand, medium or early-maturing varieties had he thickest diameter when they were planted on April 25. 7. In general, a higher stalk yield was obtained when planted from April 25 to May 15. However, the planting time for the maximum stalk yield varied from one variety to another depending upon maturity of variety. Ear]y-maturing varieties produced the maximum yield when planted about April 25, medium varieties from April 25 to May 15 and late-maturing varieties did when planted from April 5 to May 15 respectively. The yield decreased linearly when they were planted later than the above dates. 8. A varietal difference in Brix % was also observed. The Brix % decreased linearly when the varieties were planted later than May 15. Therefore, a highly negative relationship between planting date(x) and Brix %(y) was detected. 9. The Brix % during 40 to 45 days after leading was the highest at the 1st to the 3rd internodes from the top while it decreased gradually from the 4th internode. It increased again somewhat at the 2nd internode from the ground level. However, it showed a reverse relationship between the Brix % and position of internode before heading. 10. Sugar content in stalk decreased gradually as planting was getting delayed though one variety differed from another. It seemed that sweet sorghum which planted later than June had no value as a sugar crop at all. 11. The Brix % and sugar content in stalk increased from heading and reached the maximum 40 to 45 days after heading. The percentage of purity showed the same tendency as the mentioned characters. Accordingly, a highly positive correlation was observed between. percentage of purity and Brix % or sugar content in stalk. 12. The highest refinable sugar yield was obtained from the planting on April 25 in late-maturing varieties and from that on May 15 in early-maturing varieties. The yield rapidly decreased when planted later than those dates. Such a negative correlation between planting date(x) and refinable sugar yield(y) was highly significant at 1% level. 13. Negative correlations or linear regressions between delayed planting and the number of days from sowing to germination. accumulated temperature during germination period, number of days to heading, accumulated temperature to heading, plant height, stem diameter, stalk weight, Brix %. sugar content, refinable sugar yield or Purity % were obtained. On the other hand, highly positive correlations between the number of days from sowing to heading(x) and Brix %, sugar content, purity %, refinable sugar yield, plant height or stalk yield, between Brix %(x) and purity %, refinable sugar yield or stalk yield, between sugar content(x) and purity% or refinable sugar yield(y), between purity %(x) and refinable sugar yield and between daylength at heading(x) and Brix %. number of days from sowing to heading, sugar content, purity % or refinable sugar yield (y), were found, respectively. Experiment II: The 11 varieties were selected out of the varieties used in Experiment I from ecological and genetic viewpoints. Complete diallel cross were made among them and the heading date, stalk length, stalk yield, Brix %, syrup yield, combining ability and genetic behavior of F$_1$ plants and their parental varieties were investigated. The results could be summarized as follows: 1. In general, number of days to heading showed a partial dominance over earliness or late maturity or had a mid-value, though there were some specific combinations showing a complete dominance or transgressive segregation in maturity. Some combinations showed relatively high general or specific combining abilities in maturity. Therefore, a 50 to 50 segregation ratio in heading date could be estimated in this study and it might be positive to have a selection in early generation since heritability of the character was relatively high. 2. A vigorous hybrid vigor was observed in stalk length. A complete or partial dominant effect of long stalk was obtained. The general combining ability and specific combining ability of stalk length were generally high. Long and short stalks segregated in a ratio of 50:50 and its heritability was relatively low. 3. Except for several specific combinations, high stalk yield seemed to be partial dominant over the low yield. Some varieties demonstrated relatively high general as well as specific combining abilities. It was assumed that several recessive genes were involved in expression of this character. The interaction among regulating recessive genes was also obtained. Accordingly, the heritability of stalk yield seemed to be rather low. 4. The Brix % of hybrid plants located around mid-parental value though some of them showed much higher or lower percentage. It could be explained by the fact that such behavior might be due to partial dominance of Brix %. The varieties with, relatively higher Brix % were high both in general. and specific combining abilities. Therefore, it could be recommended to use the varieties having higher sugar content in order to develop higher-sugar varieties. 5. The syrup yield seemed to be transgressively segregated or completely dominant over low yield. Hybrid vigor of syrup yield was relatively high. No-consistent relationship between general combining ability and specific combining ability was observed. However, some cases demonstrated that the varieties with relatively higher general combining ability had relatively lower specific combining ability. It was assumed that the frequencies of dominant and recessive alleles were almost same.

  • PDF

Showing Filial Piety: Ancestral Burial Ground on the Inwangsan Mountain at the National Museum of Korea (과시된 효심: 국립중앙박물관 소장 <인왕선영도(仁旺先塋圖)> 연구)

  • Lee, Jaeho
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.123-154
    • /
    • 2019
  • Ancestral Burial Ground on the Inwangsan Mountain is a ten-panel folding screen with images and postscripts. Commissioned by Bak Gyeong-bin (dates unknown), this screen was painted by Jo Jung-muk (1820-after 1894) in 1868. The postscripts were written by Hong Seon-ju (dates unknown). The National Museum of Korea restored this painting, which had been housed in the museum on separate sheets, to its original folding screen format. The museum also opened the screen to the public for the first time at the special exhibition Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea held from July 23 to September 22, 2019. Ancestral Burial Ground on the Inwangsan Mountain depicts real scenery on the western slopes of Inwangsan Mountain spanning present-day Hongje-dong and Hongeun-dong in Seodaemun-gu, Seoul. In the distance, the Bukhansan Mountain ridges are illustrated. The painting also bears place names, including Inwangsan Mountain, Chumohyeon Hill, Hongjewon Inn, Samgaksan Mountain, Daenammun Gate, and Mireukdang Hall. The names and depictions of these places show similarities to those found on late Joseon maps. Jo Jung-muk is thought to have studied the geographical information marked on maps so as to illustrate a broad landscape in this painting. Field trips to the real scenery depicted in the painting have revealed that Jo exaggerated or omitted natural features and blended and arranged them into a row for the purposes of the horizontal picture plane. Jo Jung-muk was a painter proficient at drawing conventional landscapes in the style of the Southern School of Chinese painting. Details in Ancestral Burial Ground on the Inwangsan Mountain reflect the painting style of the School of Four Wangs. Jo also applied a more decorative style to some areas. The nineteenth-century court painters of the Dohwaseo(Royal Bureau of Painting), including Jo, employed such decorative painting styles by drawing houses based on painting manuals, applying dots formed like sprinkled black pepper to depict mounds of earth and illustrating flowers by dotted thick pigment. Moreover, Ancestral Burial Ground on the Inwangsan Mountain shows the individualistic style of Jeong Seon(1676~1759) in the rocks drawn with sweeping brushstrokes in dark ink, the massiveness of the mountain terrain, and the pine trees simply depicted using horizontal brushstrokes. Jo Jung-muk is presumed to have borrowed the authority and styles of Jeong Seon, who was well-known for his real scenery landscapes of Inwangsan Mountain. Nonetheless, the painting lacks an spontaneous sense of space and fails in conveying an impression of actual sites. Additionally, the excessively grand screen does not allow Jo Jung-muk to fully express his own style. In Ancestral Burial Ground on the Inwangsan Mountain, the texts of the postscripts nicely correspond to the images depicted. Their contents can be divided into six parts: (1) the occupant of the tomb and the reason for its relocation; (2) the location and geomancy of the tomb; (3) memorial services held at the tomb and mysterious responses received during the memorial services; (4) cooperation among villagers to manage the tomb; (5) the filial piety of Bak Gyeong-bin, who commissioned the painting and guarded the tomb; and (6) significance of the postscripts. The second part in particular is faithfully depicted in the painting since it can easily be visualized. According to the fifth part revealing the motive for the production of the painting, the commissioner Bak Gyeongbin was satisfied with the painting, stating that "it appears impeccable and is just as if the tomb were newly built." The composition of the natural features in a row as if explaining each one lacks painterly beauty, but it does succeed in providing information on the geomantic topography of the gravesite. A fair number of the existing depictions of gravesites are woodblock prints of family gravesites produced after the eighteenth century. Most of these are included in genealogical records and anthologies. According to sixteenth- and seventeenth-century historical records, hanging scrolls of family gravesites served as objects of worship. Bowing in front of these paintings was considered a substitute ritual when descendants could not physically be present to maintain their parents' or other ancestors' tombs. Han Hyo-won (1468-1534) and Jo Sil-gul (1591-1658) commissioned the production of family burial ground paintings and asked distinguished figures of the time to write a preface for the paintings, thus showing off their filial piety. Such examples are considered precedents for Ancestral Burial Ground on the Inwangsan Mountain. Hermitage of the Recluse Seokjeong in a private collection and Old Villa in Hwagae County at the National Museum of Korea are not paintings of family gravesites. However, they serve as references for seventeenth-century paintings depicting family gravesites in that they are hanging scrolls in the style of the paintings of literary gatherings and they illustrate geomancy. As an object of worship, Ancestral Burial Ground on the Inwangsan Mountain recalls a portrait. As indicated in the postscripts, the painting made Bak Gyeong-bin "feel like hearing his father's cough and seeing his attitudes and behaviors with my eyes." The fable of Xu Xiaosu, who gazed at the portrait of his father day and night, is reflected in this gravesite painting evoking a deceased parent. It is still unclear why Bak Gyeong-bin commissioned Ancestral Burial Ground on the Inwangsan Mountain to be produced as a real scenery landscape in the folding screen format rather than a hanging scroll or woodblock print, the conventional formats for a family gravesite paintings. In the nineteenth century, commoners came to produce numerous folding screens for use during the four rites of coming of age, marriage, burial, and ancestral rituals. However, they did not always use the screens in accordance with the nature of these rites. In the Ancestral Burial Ground on the Inwangsan Mountain, the real scenery landscape appears to have been emphasized more than the image of the gravesite in order to allow the screen to be applied during different rituals or for use to decorate space. The burial mound, which should be the essence of Ancestral Burial Ground on the Inwangsan Mountain, might have been obscured in order to hide its violation of the prohibition on the construction of tombs on the four mountains around the capital. At the western foot of Inwangsan Mountain, which was illustrated in this painting, the construction of tombs was forbidden. In 1832, a tomb discovered illegally built on the forbidden area was immediately dug up and the related people were severely punished. This indicates that the prohibition was effective until the mid-nineteenth century. The postscripts on the Ancestral Burial Ground on the Inwangsan Mountain document in detail Bak Gyeong-bin's efforts to obtain the land as a burial site. The help and connivance of villagers were necessary to use the burial site, probably because constructing tombs within the prohibited area was a burden on the family and villagers. Seokpajeong Pavilion by Yi Han-cheol (1808~1880), currently housed at the Los Angeles County Museum of Art, is another real scenery landscape in the format of a folding screen that is contemporaneous and comparable with Ancestral Burial Ground on the Inwangsan Mountain. In 1861 when Seokpajeong Pavilion was created, both Yi Han-cheol and Jo Jung-muk participated in the production of a portrait of King Cheoljong. Thus, it is highly probable that Jo Jung-muk may have observed the painting process of Yi's Seokpajeong Pavilion. A few years later, when Jo Jungmuk was commissioned to produce Ancestral Burial Ground on the Inwangsan Mountain, his experience with the impressive real scenery landscape of the Seokpajeong Pavilion screen could have been reflected in his work. The difference in the painting style between these two paintings is presumed to be a result of the tastes and purposes of the commissioners. Since Ancestral Burial Ground on the Inwangsan Mountain contains the multilayered structure of a real scenery landscape and family gravesite, it seems to have been perceived in myriad different ways depending on the viewer's level of knowledge, closeness to the commissioner, or viewing time. In the postscripts to the painting, the name and nickname of the tomb occupant as well as the place of his surname are not recorded. He is simply referred to as "Mister Bak." Biographical information about the commissioner Bak Gyeong-bin is also unavailable. However, given that his family did not enter government service, he is thought to have been a person of low standing who could not become a member of the ruling elite despite financial wherewithal. Moreover, it is hard to perceive Hong Seon-ju, who wrote the postscripts, as a member of the nobility. He might have been a low-level administrative official who belonged to the Gyeongajeon, as documented in the Seungjeongwon ilgi (Daily Records of Royal Secretariat of the Joseon Dynasty). Bak Gyeong-bin is presumed to have moved the tomb of his father to a propitious site and commissioned Ancestral Burial Ground on the Inwangsan Mountain to stress his filial piety, a conservative value, out of his desire to enter the upper class. However, Ancestral Burial Ground on the Inwangsan Mountain failed to live up to its original purpose and ended up as a contradictory image due to its multiple applications and the concern over the exposure of the violation of the prohibition on the construction of tombs on the prohibited area. Forty-seven years after its production, this screen became a part of the collection at the Royal Yi Household Museum with each panel being separated. This suggests that Bak Gyeong-bin's dream of bringing fortune and raising his family's social status by selecting a propitious gravesite did not come true.