• Title/Summary/Keyword: 식생면적

Search Result 548, Processing Time 0.025 seconds

The Quantitative Analysis of Cooling Effect by Urban Forests in Summer (여름철 도시 인근 산림에 의한 냉각효과의 정량화에 대한 연구)

  • Lee, Hojin;Cho, Seongsik;Kang, Minseok;Kim, Joon;Lee, Hoontaek;Lee, Minsu;Jeon, Jihyeon;Yi, Chaeyeon;Janicke, Britta;Cho, Changbeom;Kim, Kyu Rang;Kim, Baekjo;Kim, Hyunseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.73-87
    • /
    • 2018
  • A variety of micro meteorological variables such as air temperature, wind, solar radiation and latent heat at Gwangneung forests (conifer and broadleaved forests) and AWS (Automated Weather Station) of Pocheon urban area were used to quantify the air temperature reduction effect of forests, which is considered to be an eco-friendly solution for reducing the urban heat island intensity during summer. In June, July and August of 2016 and 2017, the average maximum air temperature differences between above and below canopy of forests, and between the forests and urban areas were $-1.9^{\circ}C$ and $-3.4^{\circ}C$ respectively, and they occurred at 17:00. However, there was no difference between conifer and broadleaved forests. The effect of air temperature reduction by the forests was positively correlated with accumulated evapotranspiration and solar radiation from 14:00 to 17:00 and showed a negative correlation with wind speed. We have developed a model to quantify the effect of air temperature reduction by forests using these variables. The nighttime air temperature reduction effect by forests was due to the generation of cold air from radiative cooling and the air temperature inversion phenomenon that occurs when the generated cold air moves down the side of mountain. The model was evaluated in Seoul by using 28 AWSs. The evaluation shows that the air temperature of each district in Seoul was negatively correlated with the area and size of the surrounding tall vegetation that drives vegetation evapotranspiration during the day. During the night, however, the size of the surrounding tall vegetation and the elevations of nearby mountains were the main influencing factors on the air temperature. Our research emphasizes the importance of the establishment and management of urban forests and the composition of wind roads from mountains for urban air temperature reduction.

Vegetation Distribution Near Abandoned Metalliferous Mines and Seed Germination Properties of Woody Plants by the Contaminated Soils (폐광산 주변의 목본 식생 현황 및 오염 토양에 대한 목본 종자의 발아 특성)

  • Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Noh, Nam-Jin;Kyung, Ji-Hyun;Kim, Jeong-Gyu;Son, Yo-Whan
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.47-57
    • /
    • 2006
  • This study was carried out to select the Eco-tree for successful phytoremediation of abandoned metalliferous mines. We examined vegetation and heavy metal concentrations of woody plants in abandoned mining areas, and also conducted seed germination and seedling growth experiment on contaminated soils from Gahak and Geumjeong mines. Pinus densiflora, Robinia pseudoacacia, Lespedeza bicolor and Alnus japonica showed high frequency in the survey areas and had high heavy metal concentrations compared to other species. Heavy metal concentrations were higher in roots than in leaves and stems. The seed germination rate was in the order of P. densiflora, L. bicolor, R. pseudoacacia, and Alnus japonica from the incubactor and greenhouse experiment. In the incubator experiment germination rate was highest in the control soil for P. densiflora and A. japonica. Germination rate of P. densiflora was highest on the 100% contaminated soil for Gahak mine while germination rate decreased with increased percentage of contaminated soil for Geumjeong mine. In the greenhouse experiment germination rate was lowest on the 40% contaminated soil for Gahak mine while germination rate was lowest on the 20% contaminated soil for Geumjeong mine and increased with increased percentage of contaminated soil. Shoot growth was highest for L. bicolor while root growth was highest for R. pseudoacacia except for 20% contaminated soil in Geumjeong mine.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Sediment Discharge and Invasion of Plants on the Slope of the Forest Roads(II) - Invasion of Trees on the Banking Slope - (임도사면(林道斜面)의 토사유출(土砂流出)과 식생침입(植生侵入)에 관한 연구(硏究)(II) - 성토사면(盛土斜面)의 목본식물침입(木本植物侵入)을 중심(中心)으로 -)

  • Chun, Kun Woo;Oh, Jae Man
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • The purpose of this investigation is to point out the physical fixation and stability of banking slopes of forest roads by invasion of trees. We investigated the situations of sediment discharge and coverage of invaded trees at banking slopes of forest roads. The coverage of invaded trees were calculated from crown injection based on the stable slope and was compared with length of slope, slope gradient, and passage years after construction of forest road. 1. We investigated on the sediment discharge and the invasion of trees at banking slopes, which were actually observed 8 forest roads of Kyonggi-Do and Kangwon-Do. 2. There was no physical stability of the banking slope due to the surface erosion and slope failure, but the tree invasions were active at the stable plots. 3. The length of slope was constructed to 4.0m to 61.0m and recent forest road was mainly constructed to the slopes longer than 30m. There was strong regional effect between the length of slope and the coverage of invaded trees and the above two factors were inversely proportional to each other. 4. There was no significant relationship between the slope gradient and the coverage of invaded trees and the slope constructed within the angle of repose showed the relatively high coverage of invaded trees. 5. There was no significant relationship between the passage years and the coverage of invaded trees in the same investigative region after the construction of forest road. But there was a gradually increasing relationship of tree invasion between above two factors. However, there was some limitation to expect the invasion of the tree species. 6. In the light of the above results, we suggest that the construction of forest road may need foundation work and vegetation work simultaneously for the physical stability to make the environment of tree plantation and that the reasonable increase of construction cost of forest road may be prior to the other factors.

  • PDF

Ecological Characteristics and Vegetation Structure Analysis of Eurya Japonica Community -Focusing on Busan Metropolitan City- (사스레피나무 군락의 생태적 특성 및 식생구조 분석 -부산광역시를 중심으로-)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • The purpose of this study is to investigate the ecological characteristics and vegetation structures of Eurya japonica in Busan. As a result of the TWINSPAN and DCA analysis, 89 plots of 100㎡ each were divided into 3 communities: Quercus serrata-Pinus densiflora-E. japonica community, Pinus thunbergii-E. japonica community, and P. thunbergii-Camellia japonica community. Community I consisted of the Quercus serrata-Pinus densiflora-E. japonica which was mainly located in the high altitude inland. While Q. serrata and P. densiflora competed in the tree layer, the dominant species of the understory layer was E. japonica. Since Carpinus tschonoskii, one of the climax species, was distributed evenly from shrub to tree layers, it was likely that deciduous oak trees or Carpinus tschonoskii would become dominant species in community I. In community I, E. japonica was found in higher altitude than the other evergreen broad-leaved tree and was expected to maintain their tree vigor even if the vegetation structure is converted into the deciduous forest. Community II, the P. thunbergii-E. japonica community, was predicted to maintain its tree vigor unless there were unexpected disturbance factors. Community III, consisting of P. thunbergii-C. japonica and located in Dongbaek Island, was under artificial management. In community III, P. thunbergii was the only species in the tree layer, while C. japonica was predominant in the understory layer. E. japonica and various evergreen broad-leaved tree species were present in the understory layer and shrub layer, which were unmanaged areas. Therefore, it is expected that unless C. japonica is continuously managed, E. japonica is likely to become the dominant species. There were also various evergreen broad-leaved species, such as Machilus thunbergii and Pittosporum tobira, present in the shrub layer. If the temperature continues to rise, the habitat is expected to become evergreen broad-leaved forests in the future as P. thunbergii community declines. The result of Pearson's correlation coefficient analysis of E. japonica and species appearing in 89 plots showed that 9 species were had a statistically significant relationship (p<0.05). Four species, including P. tobira and Q. dentata, had a positive correlation. Five species had a negative correlation, and C. japonica, which had the same ecological position as E. japonica, showed the most negative correlation at -0.384.

The Comparative Evaluation of Plant Species Diversity in Forest Ecosystems of Namsan and Kwangneung (남산(南山) 및 광릉(光陵) 산림생태계(山林生態系)의 식물(植物) 종다양성(種多樣性)의 비교 (比較) 평가(評價))

  • Kim, Ji Hong;Lee, Byung Cheon;Lee, You Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.605-618
    • /
    • 1996
  • Namsan area supposed to be a disturbed ecosystem and Kwangneung area considered to be a natural ecosystem were selected for the study. On the basis of the plant species composition, the study was planned to examine structural plant species diversity so as to provide basic ecological information to restore more stable and healthy ecosystem for Namsan. The stratified sample plot method was employed for collecting vegetation data, establishing $20m{\times}20m$ square plots for overstory trees, $4m{\times}4m$ plots for mid-story woody plants, and $1m{\times}1m$ plots for ground vegetation. The herbaceous plants were periodically investigated by taking into account for seasonal(spring, summer, and autumn) variation in presence. Ecological attributes were evaluated through analyzing species composition, species diversity, life forms, interspecies association, and growing habitat for various forest types, vertical layers, life forms, and seasonal variation. Even though the species diversity index of canopy trees in the deciduous forest of Namsan was estimated higher than that of the natural forest of Kwangneung, overall species diversity of plants in Kwangneung area was greater than that in Namsan area. Herbaceous plants presented in Kwangneung but not in Namsan were Aconitum pseudo-proliferum, Botrychium virginianum, Dryopteris tokyoensis, Scutellaria insignis, Tricyrtis dilatata, and Viola kamibayashii, most of them were endemic species of Kwangneung. Elaeagnus umbellata, and Prunes padus var. seoulensis were found only in Namsan. Such species typically composed of the natural deciduous forest as Acer mono, Acer triflorum, Carpinus laxiflora, Cornus controversa, Fraxinus mandshurica, and Phellodendron amurertse were limited growing in a small size of area in Namsan. The future project should be made for encouraging the growth and expansion of the distribution of such species to restore biodiversity in Namsan area.

  • PDF

Species Composition and Vegetation Structure of Abies koreana Forest in Mt. Jiri (지리산 구상나무림의 종조성 및 식생구조)

  • Jin-Soo Lee;Dong-Bin Shin;A-Rim Lee;Seung-Jae Lee;Jun-Soo Kim;Jun-Gi Byeon;Seung-Hwan Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.259-272
    • /
    • 2023
  • This study set up 49 survey areas with an area of about 400 square meters in Abies koreana natural habitat to identify the species composition and vegetation structure of the A. koreana forest in the Mt. Jiri Nation Park, conducted field surveys using phytosociological methods, and performed the cluster analysis using the Two-Way Indicator Species Analysis (TWINSPAN) and Table manipulation. Subsequently, species composition analysis using the importance value, species diversity analysis, DBH analysis, sapling analysis, and similarity analysis was conducted by each cluster type. The cluster analysis classified the A. koreana forest in Mt. Jiri into five clusters, A, B, C, D, and E. The forest was divided into two clusters, Magnolia sieboldii-Dryopteris crassirhizoma-Sasa borealis and Betula ermanii-Solidago virgaurea-Calamagrostis arundinacea. The former was classified as type A and B by Cornus controversa-Hydrangea macrophylla, and the latter was classified as type E, a typical community, and a Sorbus commixta-Rhododendron mucronulatum cluster. And the S. commixta-R. mucronulatum cluster was divided into C type and D type by Picea jezoensis-Ligularia fischeri and Ainsliaea acerifolia. Through vegetation analysis, the importance value of A. koreana, Quercus mongolica, Acer pseudosieboldianum, Fraxinus sieboldiana, and B. ermanii was highly expressed in the A. koreana forest in Mt. Jiri. Regarding species diversity, the results were similar to those reported in other studies of A. koreana forests in Mt. Jiri. The analysis of diameter at breast height (DBH) showed that A. koreana dominated all layers, and the growth of saplings was also good, indicating that the dominance of A. koreana is expected to continue for a while. However, when considering the value of biodiversity that is expected to increase and threats caused by climate change, systematic preservation and management are required to respond to various threats based on continuous monitoring.

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.