• Title/Summary/Keyword: 식생단위

Search Result 317, Processing Time 0.026 seconds

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF

Phytosociological Study of Weed Vegetation around the Climbing Paths on Mt. Chungyeong (경기도 축령산 등산로 주변 잡초 식생의 식물사회학적 연구)

  • 안영희;송종석
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.3
    • /
    • pp.232-241
    • /
    • 2003
  • Mountain Chungyeong, 879m in altitude, is located in the northeast of the middle area in Korea. Around Mt. Chungyeong, many Korean endemic and rare plants are populated, so it is considered a very important biogeographical area where the temperature zones of northern and southern plants are crossed. Because it is close to Seoul, a capital of Korea, it is a common mountain where many tourists visit frequently. Continuous tourist's visit may cause a bad influence on vegetation around the climbing paths. Therefor, weed community around the climbing paths on Mt. Chungyeong, where visitors exert a bad influence directly on its community by coming in and out, was surveyed phytosocialogically. Our surveys have been accomplished from August, 2001 to September, 2002. weed communities formed around the climbing paths on Mt. Chungyeong were divided into several patterns and analysed. They have been divided into 5 communities and 5 subcommunities. Community A: Plantago asiatica community, A-a: Erigeron annuus subcommunity, A-b: Carex. lanceolata subcommunity, B: Pseudostellaria palibiniana community, B-a: Carex siderosticta subcommunity, B-b: Galium trachyspermum subcommunity, C: Pueraria thunbergiana community, D: Lespedeza maximowiczii community, E: Rubus crataegifolius community, F: Oplismenus undulatifolius community, The flora surveyed in these communities was constituted of 47 families, 101 genera, 17 varieties, and 149 species. Wild plants such as Plantago asiatica, Erigeron annuus, Erigeron strigosus, Pueraria thunbergiana, Lespedeza maximowiezii, Rubus crataegifolius, Artemisia princeps var. orientalis, Artemisia japonica and Lysimachia clethroides were mostly light loving plants and higher resistant plants against the stamping pressure. Our result from the ranking all surveyed areas by the Bray-Curtis ordination method was very similar to the results from phytosocialogical table analysis.

Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation (토양-식생기반의 수문모델 BAGLUVA를 적용한 토지이용별 물수지 분석 방법론)

  • Kwon, Kyung Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.98-111
    • /
    • 2015
  • Urban environmental problems such as flooding, depletion of ground water, pollution of urban streams and the heat island effect caused by urban development and climate change can be mitigated by the improvement of the urban water cycle. For the effective planning of water cycle management it is necessary to establish aerial Hydrotope Maps, with which we can estimate the status and change of the water allowance for any site. The structure of the German water balance model BAGLUVA, which is based on soil and vegetation, was analyzed and the input data and boundary condition of the model was compared with Korean data and research results. The BAGLUVA Model consists of 5 Input categories (climate, land use, topography, soil hydrology and irrigation). The structure and interconnection of these categories are analyzed and new concepts and implementation methods of topographic factor, maximum evapotranspiration ratio, effective rooting depth and Bagrov n parameter was compared and analyzed. The relation of real evapotranspiration ($ET_a$)-maximum evapotranspiration ($ET_{max}$) - precipitation (P) was via Bagrov n factor represented. The aerial and land use oriented Hydrotope Map can help us to investigate the water balance of small catchment areas and to set goals for volume of rainwater management and LID facilities effectively in the city. Further, this map is a useful tool for implementing water resource management within landscape and urban planning.

A Study on Agricultural Drought Monitoring using Drone Thermal and Hyperspectral Sensor (드론 열화상 및 초분광 센서를 이용한 농업가뭄 모니터링 적용 연구)

  • HAM, Geon-Woo;LEE, Jeong-Min;BAE, Kyoung Ho;PARK, Hong-Gi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.107-119
    • /
    • 2019
  • As the development of ICT and integration technology, many changes and innovations in agriculture field are implemented. The agricultural sector has shifted from a traditional industry to a new industrial form called the 6th industry combined with various advanced technologies such as ICT and IT. Various approaches have been attempted to analyze and predict crops based on spatial information. In particular, a variety of research has been carried out recently for crop cultivation and smart farms using drones. The goal of this study was to establish an agricultural drought monitoring system using drones to produce scientific and objective indicators of drought. A soil moisture sensor was installed in the drought area and checked the actual soil moisture. The soil moisture data was used by the reference value to compare and analyze the temperature and NDVI established by drones. The soil temperature by the drone thermal image sensor and the NDVI by the drone hyperspectral was analyzed the correlation between crop condition and soil moisture in study area. To verify this, the actual soil moisture was calculated using the soil moisture measurement sensor installed in the target area and compared with the drone performance. This study using drone drought monitoring system may enhance to promote the crop data and to save time and economy.

Environmental Factors on the Use of Wildlife Bridge by Striped Field Mouse (Apodemus agraius) (등줄쥐의 육교형 생태통로 이용에 미치는 환경 특성)

  • Gi-Yeong Jeong;Ji-Hoon Lee;Yong-Won Mo
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.337-346
    • /
    • 2023
  • Although wildlife bridge are built as a way to reduce habitat fragmentation caused by road construction, there is still a lot of debate about their effectiveness. Monitoring methods such as footprint traps and camera traps are used evaluate the effectiveness of wildlife bridge, but there is a limit to evaluate of effectiveness. In this study, the degree of use the wildlfe bridge was surveyed by striped field mouse that is likely use the wildlife bridge and surrounding as a habitat with capture-mark-recapture method.(Apodemus agraius). The distance and route of movement were identified by connecting the capture points, and the environmental factors on the use of the wildlife bridge implemented a generalized linear model(GLM) with the capture number of captured as a dependent variable. Consequently of capture, no individuals crossing the wildlife bridge, striped field mouse use the wildlife bridge as a habitat.The environmental factors affecting the use of mice were vegetation cover(1~2m, 2~8m, over 8m), vegetation construction, maximum diameter at breast height were positively correlated and slope was nagatively correlated. In conclusion, it is expected that the effectiveness of the wildlife bridge will be further improved by planting shrubs and trees and preventing high slope and cut slope increasing the utilization of the rat, such as being used as a food source in the ecosystem.

Phytosociological Study on Composition, Distribution and Habitat of the Ussurian Pear and Chinese Pear, Korean Wild Species (한국 자생 산돌배와 돌배나무의 조성, 분포, 입지에 관한 식물사회학적 연구)

  • 송종석;안영희
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.160-171
    • /
    • 2002
  • In order to clarify the species composition, distribution and habitat of the Korean wild Pyrus ussuriensis and P. pyrifolia communities, that are so expected as a useful resource plant, an investigation was carried out according to phytosociological method on Mts. Hambaek, Ilwol, Sobaek, Juwang and Gaya in Korea. In the present study, we made an attempt to elucidate the autecological characteristics of the wild Pyrus species by synecological approach. As a result, the forests including the Pyrus species were divided into the two associations and two communities, considering the existing vegetation units for the forest; Syneilesio-Quercetum serratae, Corylo-Quercetum mongozicae, Ainsziaea acerifolia- Quercus mongolica community and Fraxinus rhynchophylla-Pyrus ussuriensis community. Among the units, the Syneilesio-Quercetum serratae and the Corylo-Quercetum mongolicae belong to southern type and middile-northern type, respectively, in their distributional type. It is inferred that the wild Pyrus species are distributed preferably in the deciduous forest zone in Korea, compared to the other forest zones. In particular the Pyrus species are present alone or dominantly in only both the tree layer or subtree layer of the forests, reflecting their shade intolerance ecophysiologically. Thus they usually were distributed in SE or SW of slope aspect. Generally the canopy of the forests including the Pyrus species was so open. Species diversity of the vegetation units was highest in the Syneizesio-Quercetum serratae and lowest in the Ainsliaea acerifolia-Quercus mongolica community. The Corylo-Quercetum mongolicae and the Pyrus ussuriensis-Fraxinus rhynchophylla community are medium between the two.

A nationwide analysis of mammalian biodiversity hotspots in South Korea (전국단위의 포유류 생물다양성우수지역 분석 연구)

  • Kim, Jiyeon;Kwon, Hyuksoo;Seo, Changwan;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.453-465
    • /
    • 2014
  • Hotspots are top sites in terms of species diversity as the most threatened and most diverse sites which have been used to select priority areas for reserves. The purpose of this paper is to identify biodiversity hotspots through analyzing nationwide spatial patterns of species richness and rarity of Korean mammals. Four endangered mammals and eleven common mammals were selected as target species. Environmental variables as model input data were consisted of topography, distance, and vegetation structure etc. and Maxent was used to develop species distribution models for target species. Species richness and rarity were used as index of biodiversity. The results of this study were as follows. Firstly, hotspots of species richness for endangered mammals were in high elevation and steep mountain areas. However, species richness for whole mammals were high in low elevation of mountains. Secondly, distribution pattern of species rarity for endangered mammals were similar as richness. However, hotspots of species rarity for whole mammals were a little different from species richness. Species rarity was high in both low and high elevation of mountain areas. This study will provide the useful information for a biodiversity assessment, a habitat conservation, a national ecological network plan, and the management of protected areas.

Application of GIS to the Universal Soil Loss Equation for Quantifying Rainfall Erosion in Forest Watersheds (산림유역의 토양유실량(土壤流失量) 예측을 위한 지리정보(地理情報)시스템의 범용토양유실식(汎用土壤流失式)(USLE)에의 적용)

  • Lee, Kyu Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.322-330
    • /
    • 1994
  • The Universal Soil Loss Equation (USLE) has been widely used to predict long-term soil loss by incorporating several erosion factors, such as rainfall, soil, topography, and vegetation. This study is aimed to introduce the LISLE within geographic information system(GIS) environment. The Kwangneung Experimental Forest located in Kyongki Province was selected for the study area. Initially, twelve years of hourly rainfall records that were collected from 1982 to 1993 were processed to obtain the rainfall factor(R) value for the LISLE calculation. Soil survey map and topographic map of the study area were digitized and subsequent input values(K, L, S factors) were derived. The cover type and management factor (C) values were obtained from the classification of Landsat Thematic Mapper(CM) satellite imagery. All these input values were geographically registered over a common map coordinate with $25{\times}25m^2$ ground resolution. The USLE was calculated for every grid location by selecting necessary input values from the digital base maps. Once the LISLE was calculated, the resultant soil loss values(A) were represented by both numerical values and map format. Using GIS to run the LISLE, it is possible to pent out the exact locations where soil loss potential is high. In addition, this approach can be a very effective tool to monitor possible soil loss hazard under the situations of forest changes, such as conversion of forest lands to other uses, forest road construction, timber harvesting, and forest damages caused by fire, insect, and diseases.

  • PDF