• Title/Summary/Keyword: 식별

Search Result 6,705, Processing Time 0.038 seconds

An Approach to Component Identification based on Use-Case (유즈케이스 기반의 컴포넌트 식별 방법)

  • 김태웅;김경민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.301-303
    • /
    • 2003
  • 컴포넌트 기반 개발 방법론이 확산됨에 따라 성공적인 컴포넌트 기반 프로젝트의 핵심 요소인 효과적인 컴포넌트 식별 방법에 관한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시스템이 사용자에게 제공하는 기능을 독립적으로 분류한 유즈케이스를 기반으로 하여 인터페이스를 식별하고, 식별된 인터페이스의 상호작용을 분석하여 컴포넌트를 식별하는 방법에 대해 제안한다. 이를 위하여 유즈케이스를 기반으로 외부 인터페이스를 식별하고, 시나리오를 이용하여 식별된 인터페이스 단위로 객체를 추출한다. 추출된 객체에서 공통 객체를 분석하여 내부 인터페이스와 컴포넌트를 식별하고 최종적으로 이러한 인터페이스의 상호작용과 의존성을 분석하여 컴포넌트를 식별 하고자 한다.

  • PDF

Discriminating User Attributes in Social Text based on Multi-Instance Learning (다중 인스턴스 학습 기반 사용자 프로파일 식별)

  • Song, Hyun-Je;Kim, A-Yeong;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.47-52
    • /
    • 2012
  • 본 논문에서는 소셜 네트워크 서비스에서 사용자가 작성한 텍스트로부터 그 사용자 프로파일 식별하는 문제를 다룬다. 프로파일 식별 관련 기존 연구에서는 개별 텍스트를 하나의 학습 단위로 간주하고 이를 기반으로 학습 모델을 구축한다. 프로파일을 식별하고자 하는 사용자의 텍스트들이 주어지면 각 텍스트마다 프로파일을 식별하고, 식별된 결과들을 합쳐 최종 프로파일로 선택한다. 하지만 SNS 특성상 프로파일을 식별하는 데에 영향을 끼치지 않는 텍스트들이 다수 존재하며, 기존 연구들은 이 텍스트들을 특별한 처리없이 학습 및 테스트에 사용함으로 인해 프로파일 식별 성능이 저하되는 문제점이 있다. 본 논문에서는 다중 인스턴스 학습(Multi-Instance Learning)을 기반으로 사용자 프로파일을 식별한다. 제안한 방법은 사용자가 작성한 텍스트 전체, 즉 텍스트 집합을 학습 단위로 간주하고 다중 인스턴스 학습 문제로 변환하여 프로파일을 식별한다. 다중 인스턴스 학습을 사용함으로써 프로파일 식별에 유의미한 텍스트들만이 고려되고 그 결과 프로파일 식별에 영향을 끼치지 않는 텍스트로부터의 성능 하락을 최소화할 수 있다. 실험을 통해 제안한 방법이 기존 학습 방법보다 성별, 나이, 결혼/연애 상태를 식별함에 있어서 더 좋은 성능을 보인다.

  • PDF

Identifiers Extraction of Container Image using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 컨테이너 영상의 식별자 추출)

  • 주이환;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.238-242
    • /
    • 2004
  • 운송 컨테이너의 식별자를 추출하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 각각 이용하여 개별 식별자를 추출한다. 실제 컨테이너 영상을 대상으로 실험 결과, 제안된 컨테이너 식별자 추출 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 확인하였다.

  • PDF

개인정보 비식별화 현황 및 비식별 조치 가이드라인 보완 연구

  • Jimin Son;Minho Shin
    • Review of KIISC
    • /
    • v.33 no.6
    • /
    • pp.89-109
    • /
    • 2023
  • 최근 AI와 로봇기술 등으로 개인정보를 포함한 데이터의 처리가 일상화됨에 따라 한국정부는 개인정보 비식별 조치 가이드라인 및 데이터 3법을 발표함으로써 개인정보 비식별화를 돕고자 하였다. 하지만 복잡한 비식별화 절차와 이의 효과에 대한 불명확함으로 기업들이 개인정보를 포함한 빅데이터의 활용에 어려움을 겪고, 동시에 시민단체나 소비자단체에서는 현 가이드라인에 따른 비식별화 절차가 개인정보를 보호하기에 충분하지 않다고 지적하고 있다. 본고에서는 비식별화 현황과 기술을 검토하고 현 가이드라인의 한계점을 보완 함으로써 데이터 활용 업체와 기관들의 정확한 비식별화를 돕고 빅데이터 활용의 활성화에 기여하고자 한다.

Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Tae-Hyung;Soung, Won-Goo;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF

집중조명 / 디지털콘텐츠 식별자[DOI]

  • Lee, Jae-Jin
    • Digital Contents
    • /
    • no.12 s.91
    • /
    • pp.26-36
    • /
    • 2000
  • 인터넷이 확산되고 이를 통해 이용가능한 정보자원이 급증함에 따라 접근 및 검색을 용이하게 할 식별체계의 중요성이 강조되고 있다. 디지털콘텐츠식별자(Digital Object Identifier, DOI)는 새로운 식별체계로서 기존의 식별체계가 안고 있는 단점을 극복해 줄 것으로 기대된다. 본 연구는 기존 정보자원 식별체계의 구문구조를 대략적으로 살펴보고 현재 미국 ANSI/NISO 표준 (z39.84-2000)으로 제정된 DOI의 구문구조 표준을 토대로 국내 표준을 제안하기 위한 것이다.

  • PDF

DB강좌- Internet 정보자원의 식별 체계

  • Lee, Jae-Jin
    • Digital Contents
    • /
    • no.6 s.73
    • /
    • pp.54-58
    • /
    • 1999
  • 정보자원을 식별하는 식별기호는 관련분야 내에서와 관련분야간의 커뮤니케이션에 필수적인 도구가 된다. 이미 국제표준도서번호(ISBN)나 국제표준연속간행물번호(ISSN)는 도서와 연속간행물에 대한 식별 기호로서 널리 사용되고 있으며 중요성을 인정받고 있다. 네트워크 환경이 일반화되고 인터넷상에 존재하는 정보자원의 식별이 중요한 이슈로 떠오르면서 URI, RUN, URL, URC 등으로 이어지는 URx가 인터넷 정보자원의 식별과 검색을 위한 메타데이터로 활용되고 있다.

  • PDF

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Enhanced Neural Networks (윤곽선 추적과 개선된 신경망을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 이혜현;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다 된 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직 블록과 수평 블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출한다. 컨테이너의 개별 식별자 인식은 ART1을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 적용한다. 실험 결과에서는 제안된 컨테이너 식별자 추출 린 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF

Raising Risk and Suggesting Solution about Personal Information De-identification in Big-Data Environment (빅데이터 환경에서 개인정보 비식별화에 대한 위험성 제기 및 대응 방안 제시)

  • Lee, Su-Rim;Jang, Woong-Tae;Bae, Jae-Young;Lee, Chan-Ho;Hyun, Beom-Su
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.297-300
    • /
    • 2016
  • 최근 빅데이터 산업이 발전하고 있는 상황에서 빅데이터 산업에 활용되는 개인정보의 보호에 관한 문제가 대두하고 있다. 빅데이터 산업에서 개인정보를 활용하기 위해서는 비식별화 조치를 해야 한다. 하지만 비식별화는 비식별화 평가 모델 자체의 취약성과 더불어 비식별화된 개인정보를 재식별화 하는 위험성도 존재한다. 본 논문은 적정성 평가 모델, 비식별화 조치 기술, 재식별에 관한 위험성을 연구하고 각 위험성에 대한 대응 방안을 통해 재식별화의 문제를 해결하여 빅데이터 산업에서 비식별화된 개인정보가 안전히 쓰일 수 있도록 해야 한다.

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF