• Title/Summary/Keyword: 식물 바이러스

Search Result 450, Processing Time 0.024 seconds

Studies on Garlic Mosaic Virus -lts isolation, symptom expression in test plants, physical properties, purification, serology and electron microscopy- (마늘 모자이크 바이러스에 관한 연구 -마늘 모자이크 바이러스의 분리, 검정식물상의 반응, 물리적성질, 순화, 혈청반응 및 전자현미경적관찰-)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.12 no.3
    • /
    • pp.93-107
    • /
    • 1973
  • Garlic (Allium sativum L.) is an important vegetable crop for the Korean people and has long been cultivated extensively in Korea. More recently it has gained importance as a source of certain pharmaceuticals. This additional use has also contributed to the increasing demand for Korean garlic. Garlic has been propagated vegetatively for a long time without control measures against virus diseases. As a result it is presumed that most of the garlic varieties in Korea may have degenerated. The production of virus-free plants offers the most feasible way to control the virus diseases of garlic. However, little is known about garlic viruses both domestically and in foreign countries. More basic information regarding garlic viruses is needed before a sound approach to the control of these diseases can be developed. Currently garlic mosaic disease is most prevalent in plantings throughout Korea and is considered to be the most important disease of garlic in Korea. Because of this importance, studies were initiated to isolate and characterize the garlic mosaic virus. Symptom expression in test plants, physical properties, purification, serological reaction and morphological characteristics of the garlic mosaic virus were determined. Results of these studies are summarized as follows. 1. Surveys made throughout the important garlic growing areas in Korea during 1970-1972 revealed that most of the garlic plants were heavily infected with mosaic disease. 2. A strain of garlic mosaic virus was obtained from infected garlic leaves and transmitted mechanically to Chenopodium amaranticolor by single lesion isolation technique. 3. The symptom expression of this garlic mosaic virus isolate was examined on 26 species of test plants. Among these, Chenopodium amaranticolor, C. quince, C. album and C. koreanse expressed chlorotic local lesions on inoculated leaves 11-12 days after mechanical inoculation with infective sap. The remaining 22 species showed no symptoms and no virus was recovered from them whet back-inoculated to C. amaranticolor. 4. Among the four species of Chtnopodium mentioned above, C. amaranticolor and C. quinoa appear to be the most suitable local lesion test plants for garlic mosaic virus. 5. Cloves and top·sets originating from mosaic infected garlic plants were $100\%$ infected with the same virus. Consequently the garlic mosaic virus is successively transmitted through infected cloves and top-sets. 6. Garlic mosaic virus was mechanically transmitted to C, amaranticolor when inoculations were made with infective sap of cloves and top-sets. 7. Physical properties of the garlic mosaic virus as determined by inoculation onto C. amaranticolor were as follows. Thermal inactivation point: $65-70^{\circ}C$, Dilution end poiut: $10^-2-10^-3$, Aging in vitro: 2 days. 8. Electron microscopic examination of the garlic mosaic virus revealed long rod shaped particles measuring 1200-1250mu. 9. Garlic mosaic virus was purified from leaf materials of C. amaranticolor by using two cycles of differential centrifugation followed by Sephadex gel filtration. 10. Garlic mosaic virus was successfully detected from infected garlic cloves and top-sets by a serological microprecipitin test. 11 Serological tests of 150 garlic cloves and 30 top-sets collected randomly from seperated plants throughout five different garlic growing regions in Korea revealed $100\%$ infection with garlic mosaic virus. Accordingly it is concluded that most of the garlic cloves and top-sets now being used for propagation in Korea are carriers of the garlic mosaic virus. 12. Serological studies revealed that the garlic mosaic virus is not related with potato viruses X, Y, S and M. 13. Because of the difficulty in securing mosaic virus-free garlic plants, direct inoculation with isolated virus to the garlic plants was not accomplished. Results of the present study, however, indicate that the virus isolate used here is the causal virus of the garlic mosaic disease in Korea.

  • PDF

방제포커스 - 농작물 바이러스병의 피해 및 방제 대책

  • Kim, Jeong-Su
    • Life and Agrochemicals
    • /
    • s.259
    • /
    • pp.26-29
    • /
    • 2010
  • 작물에 발생하는 각각 바이러스의 증상과 예방대책을 숙지하고, 건전 종자와 건전 묘 사용, 청결 재배, 감염 식물체 조기제거, 신속한 진단요청과 대응 등을 성실히 이행하면 바이러스병 피해를 예방할 수 있다.

  • PDF

Convenient Nucleic Acid Detection for Tomato spotted wilt virus: Virion Captured/RT-PCR (VC/RT-PCR) (Tomato spotted wilt virus를 위한 간편한 식물바이러스 핵산진단법: Virion Captured/RT-PCR (VC/RT-PCR))

  • Cho Jeom-Deog;Kim Jeong-Soo;Kim Hyun-Ran;Chung Bong-Nam;Ryu Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • Virion captured reverse transcription polymerase chain reaction (VC/RT-PCR) could detect plant virus quickly and accurately. In the VC/RT-PCR, no antibody is needed unlike immuno-captured RT-PCR (IC/RT-PCR) which had been improved method of RT-PCR for plant viruses, and virus nucleic acids can be obtained easily within 30minutes by property of polypropylene PCR tube which is hold and immobilized viral particles on its surface. For the virion capture of Tomato spotted wilt virus (TSWV), the extraction buffer was tested. The optimum macerating buffer for TSWV was 0.01M potassium phosphate buffer, pH 7.0, containing 0.5% sodium sulfite. The viral crude sap was incubated for 30 min at $4^{\circ}C$. The virions in the PCR tubes were washed two times with 0.01M PBS containing 0.05% Tween-20. The washed virions were treated at $95^{\circ}C$ immediately for 1 min containing RNase free water and chilled quickly in the ice. Disclosed virions' RNAs by heat treatment were used for RT-PCR. Dilution end point of $10^{-5}$ from plant's crude sap infected with TSWV showed relatively higher detection sensitivity for VC/RT-PCR. During multiple detection using two or more primers, interference was arisen by interactions between primer-primer and plant species. The result of multiplex RT-PCR was influenced by combinations of primers and the kind of plant, and the optimum extraction buffer for the multiplex detection by VC/RT-PCR should be developed.

An Effective Method of Diagnosis of Potato Leafroll Virus by RT-PCR (RT-PCR 방법을 이용한 효과적인 감자 잎말림 바이러스의 검정)

  • Jeon, Jae-Heung;Joung, Young-Hee;Choi, Kyung-Hwa;Kim, Hyun-Soon;Oh, Hyun-Woo;Park, Se-Won;Joung, Hyouk
    • Korean Journal Plant Pathology
    • /
    • v.12 no.3
    • /
    • pp.358-362
    • /
    • 1996
  • 감자 잎말림 바이러스를 검정하기 위하여 ELISA 및 전자현미경에 의해 바이러스 감염이 확인된 기내 배양중인 감장의 줄기로부터 RT-PCR 분석을 수행하였다. 분리된 총 RNA들로부터 바이러스 cDNA를 합성하고 감자 잎말림 바이러스 외피단백질의 일부인 465bp를 특이하게 증폭하도록 고안한 두 primer를 사용하여 PCR 반응을 하였다. 증폭된 465pb의 DNA 절편의 염기서열을 분석한 결과 역시 감자 잎말림 바이러스임을 확인하였다. 바이러스 검정에 있어서 EL-ISA 방법과 RT-PCR 방법간의 민감도를 조사한 결과 RT-PCR 방법간의 민감도를 조사한 결과 RT-PCR 방법이 ELISA 방법보다 감자 잎말림 바이러스검정에 있어서보다 정확한 방법인 것으로 사료된다.

  • PDF

Double-Stranded RNA-Dependent Protein Kinase Gene Expression in Tobacco Plant (연초식물체에서의 dsRNA 의존성 인산화 효소 유전자 발현)

  • 이청호;박희성
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.173-178
    • /
    • 1995
  • 동물계에서 항바이러스와관련된 dsRNA 의존성 인산화 효소(PKR)의 유전자를 식물체에서 발현시킬 경우 PKR에 의한 단백질합성 및 식물바이러스의 증식조절 가능성에 대한 기초자료를 확보하기 위하여 사람에서 분리된 PKR cDNA를 Agrobacterium 방법에 의하여 연초식물체(Nicotiana tabacum cv. Xanthi-nc)로 형질전환시켰다. HindIII/PstI처리에 의해 얻어지는 약 1.8kb의 phPKR cDNA절편을 일련의 유전자 조작 방법을 통하여 식물발현벡터인 pBI121에 도입하여, p12168을 재조합하였다. 이를 A. tumefaciens LBA 4404에 형질전환시켜 연초식물체형질 전환에 이용하였다. 2mg/l BA와 0.5mg/l NAA가 포함되고 100$\mu\textrm{g}$/ml의 kanamycin이 첨가된 MS배지에서 shooting시킨 후 phytohormone이 첨가되지 않은 MS배지상에서 rooting을 시켜 형질전환 연초식물체를 얻었으며, 형질전환식물체는 정상식물체와 유사한 생육양상을 나타내었다. 형질전환식물체의 유전자도입은 hPKR cDNA의 전사부여는 RT-PCR 방법에 의하여 확인되었다.

  • PDF