• Title/Summary/Keyword: 식물체 흡수

Search Result 287, Processing Time 0.027 seconds

Uptake and Transformation of RDX by Perennial Plants in Poaceae Family (Amur Silver Grass and Reed Canary Grass) under Hydroponic Culture Conditions (수경재배조건에서 다년생 벼과식물(물억새 및 갈풀)에 의한 RDX 흡수 및 분해)

  • Park, Jieun;Bae, Bumhan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.237-245
    • /
    • 2014
  • Amur silver grass (Miscanthus sacchariflorus) and reed canary grass (Phalaris arundinacea) were selected for RDX removal experiments in hydroponic culture conditions based on vegetation survey at three shooting ranges in northern Kyunggi province. Seedling of two plants were grown in 1/4 strength Hoagland solution in quadruplicates containing 10, 20, 30, 40 mg/L RDX for 15 days along with control and blank treatments. During the 15 days of incubation, pH and RDX concentration in medium were routinely analyzed and RDX contents in the shoot and the root were determined after solvent extraction at the end of the experiments. Both plant species showed no symptoms of RDX phyto-toxicity. The pseudo first order RDX-removal constants for amur silver grass and reed canary grass were in the range of $0.0143{\sim}0.0484day^{-1}$ and $0.0971{\sim}0.1853^{-1}$, respectively. Plant biomass normalized RDX removal rates, which decreased with the increase of initial RDX concentration, were in the range of $0.27{\sim}1.01mL{\cdot}g^{-1}day^{-1}$ and $0.87{\sim}1.66mL{\cdot}g^{-1}day^{-1}$ for amur silver grass and reed canary grass, respectively. After 15 days of treatment, RDX removal from the medium decreased from 49.0% to 23.7% with increase in the initial RDX concentration in amur silver grass and 7.3% of the initial RDX remained in the plant. In reed canary grass planted medium, less than 16.8% and 5% of the initial RDX remained in the medium and in the plant, respectively. Large quantities of unidentified polar compound, which was not detected in amur silver grass, accumulated in the root and shoot of reed silver grass.

Changes of Nitrogen Fixation Activity and Heavy Metal Accumulation of Vicia amoena Community from Kumho Riverside (금호강유역 갈퀴나물군락의 중금속 축적과 질소고정 활성의 변화)

  • 박태규;박용목;송은주;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.131-137
    • /
    • 1999
  • This study was carried out to investigate the activity of nitrogen fixation and accumulation of heavy metal and inorganic matter in Vicia amoena community at lower region in Kumho riverside, including Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo. The contents of inorganic matter and heavy metal of Kumho riverside soil increased in the down stream in each organ of the plant growing in the riverside. Generally, V. amoena community showed rapid growth of shoot and high value of Top/Root ratio. V. amoena community showed higher water content of shoot at late growth stage and higher chlorophyll content. The root nodule of V. amoena community appeared in April and increased by 0.30, 0.27, 0.24, 0.06 and 0.14 g/plant, and nitrogen fixation activity of nodule attained 20.1, 16.8, 15.4, 8.5 and 5.3 μmol·C₂H₄·g fw nodule/sup -1/·h/sup -1/ for non-contaminated area Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo, respectively, in June:. Nodule formation and nitrogen fixation activity were reduced in the down stream by the soil contamination and heavy metal accumulation and showed minimum values. at Talseochon and Paldalgyo. V. amoena showed growth adaptation against heavy metal toxicity by restricting heavy metal such as Pb, Cu, Zn, Fe from transport, and by accumulating high Ca ion in shoot, nitrogen and phosphorus in root at late growth stage than those at early one, respectively, but total heavy metal per plant showed higher values in shoot than those in root by high T/R ratio of plant growth.

  • PDF

Variation of Heavy Metal Accumulation and Inorganic Matter of Rumex crispus Community from Kumho Riverside (금호강 하류 소리쟁이군락의 무기물 및 중금속 축적의 변이)

  • 박태규;박용목;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.139-144
    • /
    • 1999
  • In order to clarify ecological survival strategy of Rumex crispus community dominating under contaminated area of lower region of Kumho riverside including Chimsangyo (CS), Paldalgyo (PD), Talseochon (TS) and Kumhogyo (KH), we analyzed the content of heavy metals and inorganic matter and vegetative growth. R. crispus showed rapid formation of community by high growth rate, high T/R ratio and showed maximum T/R ratio at the contaminated area Talseochon. Nitrogen and phosphorus contents in R. crispus showed high value in shoot than that of root. T/R ratio of nitrogen and phosphorus showed 3.1∼3.6 and 1.5∼4.5 for the early growth stage, and 6.7∼17.3 and 3.9∼8.3 for the late one, respectively. The absorbed heavy metals by riot were translocated to shoot, the heavy metal content in shoot higher than those in root of Cu, Zn, Fe, and Pb for 3.6, 1.7, 1.5 and 4.8 times, respectively. Distribution ratio of the heavy metals in each organ showed 61∼85% and 15∼39% for shoot and root, respectively. R. crispus accumulated heavy metals in the order of Fe>Zn>Cu>Pb in shoot, and showed maximum values of Cu, Zn, Fe and Pb for 89.7, 376.6, 2946.1 and 13.2 ㎍/g dw, respectively at Talseochon in April. A physiological and morphological characteristics of R. crispus showed thickened leaf, increased water content above 80% and rapid growth of shoot. R. crispus showed ecological adaptation to the contaminated area by transportation of heavy metals and inorganic matter to shoot, and by accumulation of Ca ion in root.

  • PDF

Effects of Silicate Fertilizer on Increasing Phosphorus Availability in Salt Accumulated Soil during Chinese Cabbage Cultivation (염류집적토양에서 규산질 비료가 인산의 유효도 증진에 미치는 영향)

  • Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2006
  • High phosphate accumulations in greenhouse soils have been considered as a new agricultural problem in Korea. The effects of silicate on changes in phosphate fractions and on the yield of Chinese cabbage without P fertilization were investigated by pot experiment. For this experiment, P-accumulated soil was selected (Total-P; $2140mg\;kg^{-1}$). Three levels of silicate (0, 2, and $4Mg\;ha^{-1}$) without P fertilization and P fertilizer without silicate application (Si0+NPK) were applied in 1/2000a pots. The same amount of nitrogen and potassium fertilizers were applied to the all pots. The application of $4Mg\;ha^{-1}$ of silicate greatly increased the yield of Chinese cabbage by 25% compared to Si0+NPK treatment. Although there is no significant difference in plant P absorption among all the treatments, the uptake of P in the $4Mg\;ha^{-1}$ silicate application was significantly higher than Si0+NPK treatment due to increase in yield. The content of available $SiO_2$ in soil increased with increasing silicate application rates. The Si concentration of plant showed a positive correlation with available $SiO_2$ contents in soil and the yield of Chinese cabbage. Total P greatly decreased with increasing rates of silicate application, yet the change in available P content was not significant. The Si0+NPK treatment increased the content of Ca-P by 11%, however, which was decreased by 27% in the $4Mg\;ha^{-1}$ silicate application. Therefore, the effect of silicate on reducing total-P was mainly attributed to the change in concentration of Ca-P. Our results suggest that the application of silicate in P-accumulated soils not only increase the crops yield but also reduces phosphate accumulation.

Comparison of Determination Methods for Available-P in Soil of Plastic Film House (시설재배 토양의 유효인산 측정방법 비교)

  • Yang, Won-Seok;Kang, Seong-Soo;Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.163-172
    • /
    • 2006
  • Pot experiments were conducted from 1999 to 2001 to compare the different methods of available phosphorus (P) for estimation of biomass and P uptake by tomato and cucumber grown on different soils (25 soils for tomato and 8 soils for cucumber cultivation) collected from plastic film house of Chungbuk area. Supplementary experiment was conducted to estimate the relationship among several extraction methods of available P such as P adsorption, water extractable-P, Lancaster-P, Olsen-P, Bray No 1 and No 2-P, and Mehlich 1 and 3-P for a total of 71 soils that included 33 soils collected for tomato and cucumber cultivation and 38 soils taken from other sites of plastic film house. All the extraction methods of available phosphorus except P adsorption were mutually positive correlated with r ranging from 0.81 to 0.96 while the correlation coefficient between P adsorption and other methods ranged from -0.57 to -0.80. Phosphorus uptake by tomato plant applied with no fertilizer was significantly correlated with the available P extracted by different methods except P adsorption in all the experiments showing positive correlation coefficients from 0.49 to 0.76 in April, 1999, 0.53 to 0.71 in April, 2000, and 0.59 to 0.68 in October, 2000. Consequently relative amount of P uptake by tomato plant for all the experiments also significantly correlated with available P in soils showing correlation coefficients of r=0.64~0.73 (P<0.0000001) in the order of Mehlich 1-P > Mehlich 3-P > Lancaster-P. For tomato, critical concentrations of available P in soils estimated by Cate and Nelson split method were $1700mg\;kg^{-1}$ for Mehlich 3-P, $1,050mg\;kg^{-1}$ for Mehlich 1-P, and $95mg\;kg^{-1}$ for water extractable P. Also P uptake by cucumber plant was significantly correlated with Olsen-P, water extractable P, and Bray No 2-P with r value of 0.62, 0.59, and 0.51, respectively, in soils of no fertilization.

Study on the Influence of Ca and Mg Saturation Ratios of Soil on the Uptake of Ca, Mg, and K by Rice Plant (답토양(畓土壤)의 Ca, Mg 포화비(飽和比)가 수도(水稻)의 Ca, Mg, K의 흡수(吸收)에 미치는 영향(影響))

  • Jeong, Y.G.;Hong, J.W.;Ha, H.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 1987
  • A pot experiment was conducted to investigate the influence of Ca and Mg saturation ratios of soil on the uptake of Ca, Mg and K by rice plant. A silty loam soil was treated with $CaCl_2$ and $MgCl_2$ to obtain different degrees of Ca and Mg saturation. The studied ranges of Ca and Mg saturation ratios were 81:19, 70:30, 52:48, 55:45, and 31:69 in terms of the ratio of exchangeable Ca and Mg. Two levels of K application (90kg/ha, and 180kg/10a as $K_2O$) were also included in this study. The significant observation were summarized as follows. 1. When the Ca saturation of soil was dominant over Mg, the soil solution contained more Ca than Mg and vice versa. These led to the higher uptake of Ca by rice plant in Ca dominant soils and higher uptake of Mg in Mg dominant soils. 2. When the Ca and Mg saturation ratio was about equal, more Mg was released to soil solution leading to higher concentration of Mg in rice plant compare to that of Ca. 3. A trend was observed that the concentration of K in soil solution was lower in Mg dominant soils than in Ca dominant soils. This also resulted in the depressed uptake of K by rice plant under Mg dominant system when compare to Ca dominant system. 4. The increase application of K led to the increase in relative concentration of K to (Ca+Mg+K), and to the depression of divalent uptake by rice plant. However, it was observed that the degree of depression in uptake divalent by K application was more sensitive in case of Mg than that of Ca. 5. When viewed from grain yield of rice, it is pointed out that the optimum range of Ca to Mg ratio in soil may fall in the vicinity of 7:3. 6. Although K uptake by rice plant was influenced by the term of $AK^+/{\sqrt{A(Ca^{{+}{+}}+Mg^{{+}{+}})$ in soil solution, $AK^+$ itself was affected by the ratios of Ca:Mg in soil, as it were $AK^+$ value was decreased in Mg dominant soil than in Ca.

  • PDF

Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil (봉의꼬리를 이용한 논토양의 비소정화에 미치는 차광처리의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • This study was conducted to analyse the effectiveness of shading on growth and arsenic absorption of Pteris multifida, known as hyperaccumulator of arsenic, from paddy soils contaminated with heavy metals. Study was carried out in paddy soil polluted by arsenic near the former Janghang smelter. P. multifuda in the same growth stage was planted with $20{\times}20cm$ intervals in each experimental plot ($2{\times}2m$), and cultivated for 24 weeks. The growth of P. multifuda according to shading conditions was evaluated, the accumulated amount of arsenic in plants and arsenic variation in the soil was analyzed using ICP. In the result of this study, the growth of P. multifida cultivated under shading treatment was vigorous than non-shading. Accumulated amount of arsenic in aerial parts of P. multifida cultivated under non-shading ($169.8mg{\cdot}kg^{-1}$) was slightly higher than shading ($140.9mg{\cdot}kg^{-1}$), and those in underground part were almost the same. But the growth was great in 70% shading treatment. Therefore, arsenic contents absorbed from soils was much higher in shading treatment. Arsenic translocation rate (TR) of P. multifida was very high (0.87~0.89) regardless of shading conditions. So arsenic in soil could be efficiently eliminated by removal of aerial parts.

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Absorption of Nutrients on Different Growth Stages in Maize with Tillers (다수다얼성 옥수수 교잡종($IK_1$/IRI)의 생육시기별 양분흡수)

  • Joonsi, Asada;Hee Bong, Lee;Bong Ho, Choe;Moon Kyu, Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.224-229
    • /
    • 1992
  • The objective of the study was to clarify the pattern of fertilizer absorption by tillering hybrid, IK$_1$/IRI. Nangano No.1 hybrid was included as non-tillering check hybrid. Hybrids were grown in pots and the plants were periodically analyzed for their chemical components like nitrogen, phosphorus, potassium, calcium and magnesium. The results obtained indicate that the amount of nitrogen, phosphorus and potassium absorbed by IK$_1$/IRI was slightly lower than that absorbed by Nangano No.1, except nitrogen in the maturity of IK$_1$ /IRI. However, no major differences were observed for the calcium and magnesium content between two hybrids. In most cases amount of nitrogen and calcium in the plant of two hybrids seemed to decrease as the plants mature, while amount of those chemicals in the ears increased. Nitrogen efficiency for IK$_1$ /IRI seemed a little lower than that for Nangano No.1.

  • PDF

Use Efficiency of Nitrate Nitrogen Accumulated in Plastic Film House Soils under Continuous Vegetable Cultivation (시설재배(施設栽培) 토양(土壤)에 축적(蓄積)된 질산태질소(窒酸態窒素)의 유효도(有效度))

  • Song, Yo-Sung;Kwak, Han-Kang;Huh, Beom-Lyang;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.347-352
    • /
    • 1996
  • These experiments were conducted to monitor the change in $NO_3{^-}-N$ in a plastic film house where $NO_3{^-}-N$ have been accumulated in the soil of high level (about 370 mg/kg) The objective of this study was to obtain the information needed to establish the N Fertilizer recommendation based on the available N content in the soil for vegetable cultivation. The cultivated crops were chinese cabbage in the spring, lettuce in the summer, and chinese cabbage in the autumn. The crops were cultivated with and without N application. The concentration of $NO_3{^-}-N$ in the soil was analysed before and after the cultivation of each crop. When $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. even without N application, the yield of the first season crop, cabbage in the spring was 175 ton/ha and that of second season crop, lettuce in the summer was 53 ton/ha. These yields were comparable with those obtained under the application of N fertilizer: meaning that no N application would be needed for those crops when $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. The yield of third crop, cabbage in the autumn was higher under N application than that under no N application by 62%. The fate of $NO_3{^-}-N$ in the soil differed along with the crop sequence. In the first crop, 14.5% was absorbed by crop, 25.4% remained in the soil and 60.1% was unaccounted for. In the second season, 25.3% was absorbed by crop, 51.8% remained in the soil and 22.9% was unaccounted for. In the third crop, 62.8% was absorbed by crop, 19.4% remained in the soil and 16.8% was unaccounted for.

  • PDF