• Title/Summary/Keyword: 시험온도

Search Result 3,451, Processing Time 0.035 seconds

Changes in Growing Period and Productivity under Double Cropping of Spring Potato and Summer Cereals in Paddy Fields of Southern Korea (남부지역 논에서 봄감자와 하작물 이모작에 따른 생육기간 및 생산성 변화)

  • Seo, Jong-Ho;Hwang, Chung-Dong;Choi, Weon-Young;Bae, Hyeon-Kyung;Kim, Sang-Yeol;Oh, Seong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Changes in growing periods and productivities of crops under double cropping of potato-rice, potato-soybean and potato-maize, were investigated at the Paddy Experimental Fields in Miryang City from 2015 to 2018. Spring potatoes planted in early March showed a yield of 2.1-2.3 ton/10a and a period of 90 days. In double cropping, growing period of rice, soybean, and maize was about 130, 125 and 115 days, respectively. The potato yield obtained was as much as 616, 330 and 815 kg/10a under double cropping with rice, soybean and maize, respectively. It is beneficial to sow the spring potatoes as early as possible to increase the yield and to secure the growing period of sequential crops. The introduction of summer medium-late variety grain crops into double cropping of spring potato and rice as well as into double cropping of spring potato and soybean/maize, was possible because of no sowing in the fall and plants were able to reach the heading growth stage before the safe heading limit of rice in particular. In the case of maize, the growth period was different according to the change in temperature over the year. The introduction of upland crops such as soybeans and maize instead of rice improved soil physicochemical properties in a short period of time, contributing to the increase of spring potato yields, but there was also a risk of damage by successive cropping for more than three years. Spring potato-maize showed higher yield in terms of starch production, and spring potato-soybean was found to be advantageous for net income.

A Study on Sod Culture Using Water Foxtail (Alopecurus aegualis var. amurensis) in Apple Orchard (뚝새풀을 이용(利用)한 사과원 초생재배(草生栽培)에 관(關)한 연구(硏究))

  • Jung, J.S.;Lee, J.S.;Choi, C.D.;Cheung, J.D.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.128-135
    • /
    • 1998
  • The experiment was carried out to obtain basic informations on sod culture using water foxtail in apple orchard at Kyeongbuk Provincial RDA in 1996 to 1997. Period of seedling emergence varied with sowing time and accumulative temperature. Sowing at Nov. 25 required longer than 100 days, while it needed only 8 days when water foxtail was sowed at Sep. 20. In a view of accumulative temperature, sowing at March 15 needed $139^{\circ}C$ but it required about $1,000^{\circ}C$ at August 10. This result showed that the seed of water foxtail has strong summer-dormancy in natural condition. Water foxtail had s-shape growth curve during growing season, and growth rate was the highest from March to May in this period. Plant height increased 2 times and 4 times for dry weight from March 20 to April 20. However, growth was decreased by summer depression after May. Major weeds in apple orchard were horseweed, akino-nogeshi and shepherd's-purse. These species were suppressed by the dominance of water foxtail. Water foxtail as a cover plant could be used for a method of weed control instead of herbicide in apple orchard.

  • PDF

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.

Effect of the Feeding Probiotics, Illite, Activated Carbon, and Hardwood Vinegar on the Meat Quality and Shelf-Life in Chicken Thigh (사료내 생균제, 일라이트, 활성탄 및 목초액의 첨가가 닭 다리육의 품질 및 저장성에 미치는 영향)

  • Kim, Young-Jik;Yoon, Yong-Bum
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.480-485
    • /
    • 2008
  • In this experiment, 5 treatments consisted of control, probiotics (0.2%; T1), illite (1.0%; T2), activated carbon (1.0%; T3), and hardwood vinegar (1.0%; T4) as diets of chicken were evaluated for 35 days through feeding of 200 male chickens (Arbor Acre Broiler). Thigh muscle from slaughtered chickens were analyzed on pH, volatile basic nitrogen (VBN), thiobarbituric acid reactive substance (TBARS), shear force, and meat color during 10 d of cold storage at $4{\pm}1^{\circ}C$. Groups of T3 and T4 showed higher pH levels compared to the control group, and T4 showed significantly higher value. Over the storage period, all treatment groups showed increase in pH (p<0.05). Values of VBN of T1, T3, and T4 were lower than those of the control group and T2 up to 7 d of storage (p<0.05), but there was no significance at 10 d of storage. Values of TBARS of T3 and T4 were lower than the control group, T1, and T2, while all treated groups showed rapid increase of TBARS values over storage period (p<0.05). Shear force did not show significant difference among treated groups, but it was decreased over storage. Lightness of meat color (L) in treated groups was higher than the control, and T4 showed the highest value during entire storage period (p<0.05). Yellowness levels (b) of T3 and T4 were higher than the control group. These results may suggest the improvement of chicken meat quality and shelf life via the addition 1% activated carbon and 1% hardwood vinegar into feed.

Effects of Dietary Mugwort Powder on the VBN, TBARS, and Fatty Acid Composition of Chicken Meat during Refrigerated Storage (쑥 분말의 급여가 계육의 저장기간 중 VBN, TBARS 및 지방산 조성에 미치는 영향)

  • Park, Chang-Ill;Kim, Young-Jik
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.505-511
    • /
    • 2008
  • The goal of this study was to investigate the effects of dietary mugwort on the proximate composition, volatile basic nitrogen (VBN), thiobarbituric acid reactive substance (TBARS) and fatty acid in chicken meats. One hundred sixty broiler chicks (1 d old) were assigned to one or four dietary groups: Control; commercial feed supplemented with 1% mugwort (T1); commercial feed with 3% mugwort (T2) and commercial feed with 5% mugwort (T3). After 42 d, broilers from each group were slaughtered and meat samples were vacuum packaged and stored at $4{\pm}1^{\circ}C$ over a period of 0, 1,2,3, and 4 wk. Chicken breast was not influenced by all treatments in moisture, crude protein and crude fiber, while crude fat was lowered (p<0.05) in chickens fed with the T2 and T3 diets compared to the control and T1 diets. All treatments with mugwort diets tended to have decreased VBN values for chicken breast and thigh compared to control. As storage time increased, VBN was increased for all chickens (p<0.05). No significant differences in TBARS were observed among all treatments at 0 wk. TBARS values were reduced with the T2 and T3 diets and initially increased from 0 through 3 wk, then abruptly decreased at 4 wk. Dietary mugwort supplementation resulted in increased stearic acid (excepted T2) and oleic acid and decreased linoleic acid. Stearic acid in thigh meat was decreased in the T1, T2 and T3, however linoleic acid levels tended to increase with mugwort powder supplementation. It is concluded that dietary mugwort has a positive effect on increasing unsaturated fatty acid contents and decreasing saturated fatty acids.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2 (Bacillus subtilis S37-2 균주의 항진균활성 및 식물생육촉진 효과)

  • Kwon, Jang-Sik;Weon, Hang-Yeon;Suh, Jang-Sun;Kim, Wan-Gyu;Jang, Kab-Yeul;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.447-453
    • /
    • 2007
  • With a broad objective for the development of microbial based fertilizers, a total of 373 strains were isolated from rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass. The efficacy of the isolates to augument overall plant growth was evaluated. After screening for their plant growth promotion and antagonistic properties in vitro efficient strains were further selected. The most efficient strains was characterized by 16S rRNA gene sequences and biochemical techniques and was designated as Bacillus subtilis S37-2. The strains facilitated plant growth and inhibited the plant phathogenic fungi such as Fusarium oxysporum (KACC 40037, Rhizoctonia solani (KACC 40140), and Sclerotinia sclerotiorum (KACC 40457). Pot based bioassay using lettuce as test plant was conducted by inoculating suspension ($10^5$ to $10^8cells\;mL^{-1}$) of B. subtilis S37-2 to the rhizosphere of lettuce cultivated in soil pots. Compared with non-inoculated pots, marked increase in leaf (42.3%) and root mass (48.7%) was observed in the inoculation group where the 50ml of cell mixture ($8.7{\times}10^8cells\;ml^{-1}$) was applied to the rhizosphere of letuce either once or twice. Antagonistic effects of B. subtilis S37-2 strain on S. sclerotiorum (KACC 40457) were tested. All the tested lettuce plants perished after 9 days in treatment containing only S. sclerotiorum, but only 17% of lettuce was perished in the inoculation plot. B. subtilis grew well in the TSB culture medium. The isolates grew better in yeast extracts than peptone and tryptone as nitrogen source. The growth rate was 2~4 times greater at $37^{\circ}C$ as compared with $30^{\circ}C$ incubation temperature. B. subitlis S37-2 produced $0.1{\mu}g\;ml^{-1}$ of IAA (indole 3-acetic acid) in the TSB medium containing L-tryptophan($20mg\;L^{-1}$) in 24 hours.

Analysis of Freezing Injury Rate, Hormone and Soluble Sugars between 'Fuji' and 'Hongro' Apple Trees in Flowering Period (개화기 사과 '후지'와 '홍로'의 품종간 저온 피해율, 호르몬과 유리당 분석)

  • Jeong, Jae Hoon;Han, Jeom Hwa;Ryu, Suhyun;Cho, Jung Gun;Lee, Seul-Ki
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.320-327
    • /
    • 2021
  • Freezing damage to fruit trees is frequently occurring due to cold in winter and low temperature in spring to abnormal weather caused by global warming. In particular, the freezing injury of deciduous fruit trees is highly dependent on the developmental stages of the flower buds. And the cold resistance is weakened as the growth progresses, so it is most vulnerable period from flowering to petal fall(post-bloom). Therefore, this study was conducted to analyze the cause of the freezing injury caused by severe low temperature to 'Fuji', which has a late flowering period more than 'Hongro' in April 2020. We investigated freezing injury rate in 'Fuji' and 'Hongro' apple trees damaged by natural low temperature at Boeun-gun, Chungbuk province in Korea. In addition, flower buds in the same developmental stage (tight cluster) were treated artificially low temperature to investigate the injury rate for accurate comparative analysis between varieties, and to analyze the soluble sugar and hormone contents in the flower buds. As a result of survey in natural low temperature, 'Fuji' had a higher injury rate than 'Hongro' in both orchards, and in particular, B orchard 'Fuji' had the highest injury rate of 60.5%. Also there were significantly difference in the freezing injury rate between 'Fuji' and 'Hongro' in artificially low temperature treatments. As a result of analyzing the soluble sugar contents in 'Hongro' was higher than 'Fuji'. Also ABA, IAA and SA contents were more increased in the damaged tissue than in the normal flower buds by low temperature treatments. Consequently, it was assumed that the freezing injury was closely related to soluble sugar contents in the flower buds. In particular, the freezing injury rate was negatively correlated with the sorbitol contents.

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.