• 제목/요약/키워드: 시트 인서트

검색결과 7건 처리시간 0.025초

속도변화에 따른 엔진 밸브 및 시트 인서트의 마모에 관한 연구 (A Study on Engine Valve and Seat Insert Wearing Depending on Speed Change)

  • 전경진;홍재수
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.14-20
    • /
    • 2003
  • The minimization of valve and seat insert wear is a critical factor in the pursuit of engine performance improvement. In order to achieve this goal, we have developed a new simulator, which can generate and control high temperatures up to $900^{\circ}C$ and various speeds up to 80Hz during motion, just like an actual engine. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. The objective of this work focuses on the different degrees of wear from two different test speeds (10Hz & 25Hz). For this study, the temperature of the outer surface of the seat insert was controlled at $350^{\circ}C$, the cycle number was 2.1$\times$106, and the test load was 1960N. The wear depth and surface roughness were measured before and after the testing using a confocal laser scanner. It was found that a higher speed (25Hz) causes more wear than a lower speed (10Hz) under identical test conditions (temperature, cycle number and test load). In the wear mechanism adhesive wear, shear strain and abrasive wear could be observed.

사이클 수에 따른 밸브 및 시트 인서트의 마모연구 (A Study on Valve and Seat Insert Wearing depending on Cycle Number)

  • 김재학;전경진;홍재수;김양수;김덕영;임정규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.103-104
    • /
    • 2006
  • Wear of valve seating face and seat insert seating face influence the performance of engine, so they are important. To manufacture good quality valve and seat insert which have wear resistance the relations between wear factors and wear of the two seating faces have to be inspected. Cycle number is one of the important wear factors wearing the two seating faces and it can translate into mileage in rear car. But little is blown. Test variable is only cycle number and the cycle numbers are $2.0{\times}10^6,\;4.0{\times}10^6\;6.0{\times}10^6,\;8.0{\times}10^6$. And the other test conditions were fixed. Rmax of valve seating face and seat insert seating face increase linearly as cycle number is increased. Rmax of valve seating face were smaller than seat insert seating face in each cycle number. Reaction production by tribological reaction and sliding wear was found on the two faces.

  • PDF

사이클 수 증가에 따른 엔진밸브 및 시트인서트 착좌면 마모 (A Wear of Engine Valve and Seat Insert Seating Face Depending on Cycle Numbers)

  • 김재희;전경진;홍재수;윤영한
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.101-107
    • /
    • 2007
  • This study investigated the wear of the valve and seat insert seating faces. A tester, an exhaust valve and a seat insert were used. Test variables were cycle numbers ($2{\times}10^6,\;4{\times}10^6,\;6{\times}10^6\;and\;8{\times}10^6$) and Hz (10Hz and 25Hz). The other test conditions such as temperature ($350^{\circ}C$), fuel (LPG) and load (1960N) were fixed. The 10Hz tests indicated that the average Rmax of the valve increased at the rate of $7.76{\mu}m/10^6$ cycles starting from $29.42{\mu}m$ at the $2{\times}10^6$ cycles and that of the seat insert increased at the rate of $8.57{\mu}m/10^6$ cycles starting from $34.19{\mu}m$ at the $2{\times}10^6$ cycles. The 25Hz tests indicated that the average Rmax of the valve increased at the rate of $1.58{\mu}m/10^6$ cycles starting from $74.2{\mu}m$ at the $2{\times}10^6$ cycles and that of the seat insert increased at the rate of $1.25{\mu}m/10^6$ cycles starting from $83.95{\mu}m$ at the $2{\times}10^6$ cycles. The tribochemical reaction product covered the two seating faces, preventing the wear of the seating faces. As cycle numbers became greater, the average Rmax of the seating faces became greater, but the increase rate varied significantly depending on the Hz. The wear mechanism of the two faces was investigated through the tribochemical reaction.

이축 볼밸브의 볼 경량화를 위한 응력해석 (Stress Analysis of a Trunnion Ball Valve for Ball Weight Reduction)

  • 김형우;조수길;박제인;이재환
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.373-380
    • /
    • 2020
  • 고압을 받는 플랜트용 제품 설계 시에 대부분 강건 구조를 지양하다 보면 안전율이 높아지고 중량이 과다 해지는 문제가 있다. 본 논문은 플랜트용 이축 볼밸브 볼의 경량화를 위하여 밸브의 3차원 모델링과 ANSYS를 적용한 유한요소해석으로 응력해석을 수행한 후에, 허용 응력 범위와 설계 변경 제한 조건 내에서 최적화 과정으로 볼의 중량 감소를 달성하였다. 약 22%의 볼 중량이 감소되었고 응력은 증가하였으나 안전계수는 1.25가 되었다. 볼의 일부분에 과도한 응력이 있으나 대부분 재료의 항복응력 허용치 내에 있어 안전한 상태이다. 유동의 흐름을 제어하는 실링 (seal) 역할을 하는 시트 인서트와 시트 링 등 밸브의 3차원 모델에 대한 정적 구조해석으로 응력 값을 확인하여 안전함을 확인하였고, 또한 대칭 구조인 부분에 대해 2차원 단순 모델의 구조해석으로 같은 결과가 도출됨을 확인하였다. 본 연구의 범위는 볼의 중량 감소라 볼의 감소된 치수가 도출되었으며, 주변 부재의 재설계는 (신제품 개발에 해당되어) 본 연구에 고려되지 않는다.

디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구 (A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials)

  • 김양수;전경진;홍재수;정동택
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.