• Title/Summary/Keyword: 시차주사열량계법

Search Result 2, Processing Time 0.015 seconds

Studies on Synthesis of Block Copolymers Containing Polyester and Polypeptide for Drug Delivery System Ⅰ. Synthesis and Characterization of Copolymer of L-Lactic Acid and L-Glutamic Acid (폴리펩티드-의약 전달체 및 폴리펩티드 공중합체의 합성 및 물성에 관한 연구 (Ⅰ) L-Lactic Acid 와 L-Glutamic Acid 공중합체의 합성 및 그의 물성)

  • Kim, Hong Beom;Seong, Yong Gil;Jeong, Jae Hui;Baek, Hyeong Ge;Min, Tae Jin;Kim, Yeong Sun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.203-210
    • /
    • 1990
  • As a possible biocompatible and biodegrable polymer skeleton for drug delivery system, block copolymers of L-lactic acid and L-glutamic acid with different composition were synthesized and characterized. Poly (L-lactide) was prepared by polymerization of L-lactide with zine oxide at $130^{\circ}C$ for 72 hrs. 3-Amino-l-propanol was introduced to poly (L-lactide) by an ester linkage in order to initiate polymerization. Polymerization of $\gamma-benzyl-L-glutamate-N-carboxyanhydride(\gamma-BLG-NCA)$ utiliizing the amino group of modified poly (L-lactide) as an initiator gave rise to the block copoly $(L-lactide-\gamma-benzyl-L-glutamate).$ The NMR study of resulting block copolymers showed that the composition of L-lactic acid and $\gamma-benzyl-L-glutamate$ in block copolymers was depended on the weight ratio of poly (L-lactide) and $\gamma-BLG-NCA.$ The thermal properties of the resulting block copolymers were determined by the differential scanning calorimetry and by the thermogravimetry.

  • PDF

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.