Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.146-150
/
2009
구조 시스템 식별은 역문제로서 이상화된 유한요소 모델을 실험치와 일치시키기 위해 유한요소모델을 보정하는 형태로 주로 이루어진다. 이를 위해 비선형 섭동법이 사용되고 있으며 이 방법을 실제 문제에 사용하기 위해서 시스템 축소법에 대한 연구가 진행 되고 있다. 하지만 기존의 방법에서는 유한요소모델의 모든 요소가 실험치와 다르다고 가정하여서 전체 요소 수만큼의 설계 변수를 두어서 역해석을 수행한다. 이런 기존의 방법에서는 시스템이 커짐에 따라 연산 시간이 기하급수적으로 증가하게 되어 어려움이 있다. 설계 변수의 증가는 해공간(solution space)의 확장을 의미하며 이는 해의 정확성에 큰 영향을 끼친다. 본 연구에서는 모델을 적은 수의 설계영역으로 나누어서 반복연산 단계마다 해의 경향성을 이용해서 설계 영역을 전략적으로 변경하는 적응성 설계영역기법을 제안한다. 수치예제를 통해 본 연구에서 제안하는 기법의 정확도와 효용성을 고찰한다.
Proceedings of the Korean Statistical Society Conference
/
2003.10a
/
pp.143-148
/
2003
본 논문에서는 통계적 방법에 기초한 사과 선별시스템을 이용하여 사과의 색깔을 식별하고자 한다. 이를 위해 T-검정을 이용하여 에지를 검출하였고 검출된 에지로부터 체인코드를 이용하여 사과 영상의 경계선과 환상대 영역을 구하였다. 우리는 주어진 사과영상의 환상대 영역으로부터 R, G, B 채널상에서 히스토그램과 평균 명암값을 구하여 색깔 판정용 표준사과로부터 얻은 기준값들과 비교함으로서 사과의 색깔을 식별하였다.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.205-208
/
2009
POD(proper orthogonal decomposition)는 가해지는 하중(입력)의 계측없이 출력(응답)만으로 구조물의 동적특성을 파악할 수 있는 기법이다. 하지만 실제의 경우 측정데이터에 노이즈가 포함되어 있으면 분해가 완전하게 일어나지 않아 동적특성(특히 감쇠비)을 완벽히 파악하기 힘들다. 본 연구에서는 이러한 문제점을 보완하기 위해서 POD기법으로 추출된 각 모드의 자유진동파형에 RD(random decrement)법을 적용하여 노이즈에 의한 영향을 제거하는 방법을 제안하였다. 본 논문에서는 먼저 수치모델을 사용하여 계측노이즈가 있을 경우 제안된 방법을 사용하면 노이즈의 영향을 감소시킬 수 있음을 검증한 후 실험실 규모의 구조물모형에서 얻은 자유진동계측치에 제안된 기법을 적용하여 시스템식별을 수행하여 동특성을 파악하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.321-324
/
2002
본 논문에서는 다양한 환경하에서 인간의 식별과 감정을 인식할 수 있는 감정 인식 알고리즘을 제안한다. 제안된 알고리즘을 구현하기 위해, 먼저, CCD 칼라 카메라에 의해 획득한 원 영상으로부터 피부색을 이용해 얼굴영상을 얻는 과정을 거친다. 그 다음, 주요 요소분석을 기본으로 하는 얼굴인식기술인 Eigenface를 사용하여 이미지들을 고차원의 픽셀공간으로부터 저차원공간으로의 변환하는 파정을 거친다. 제안된 개인에 대한 식별과 감성인식은 사용한 특징벡터들의 추출로 인한 Eigenface의 가중치와 상관관계를 통해 이루어진다 즉, 영상의 가중치로부터 개인에 대한 식별과 감성정보를 찾는 방법을 제안한다. 마지막으로, 실험을 통해 제안된 방법의 응용가능성을 보인다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.2
/
pp.322-329
/
2005
This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNS). With GRNNS, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. furthermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10$\%$ improvement in classification error. The angular gaze accuracy is about $5^{circ}$horizontally and $8^{circ}$vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.2
/
pp.357-364
/
1996
This paper presents a new blind identification method of nonminimum phase FIR systems without employing higher-order statistics. It is based on the observation that the absolute mean of a second-order white sequence can measure the higher-order whiteness of the sequence. The proposed method may be a new alternative way to the higher-order statistics approaches. Some computer simulations show that the absolute mean is exactly estimated and the proposed method can overcome the disadvantages of the higher-order statistics approaches.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.1
/
pp.8-14
/
2002
In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.
Most of speech analysis methods developed up to date are based on second order statistics, and one of the biggest drawback of these methods is that they show dramatical performance degradation in noisy environments. On the contrary, the methods using higher order statistics(HOS), which has the property of suppressing Gaussian noise, enable robust feature extraction in noisy environments. In this paper we propose a text-independent speaker identification system using higher order statistics and compare its performance with that using the conventional second-order-statistics-based method in both white and colored noise environments. The proposed speaker identification system is based on the vector quantization approach, and employs HOS-based voiced/unvoiced detector in order to extract feature parameters for voiced speech only, which has non-Gaussian distribution and is known to contain most of speaker-specific characteristics. Experimental results using 50 speaker's database show that higher-order-statistics-based method gives a better identificaiton performance than the conventional second-order-statistics-based method in noisy environments.
The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.10
/
pp.1894-1899
/
1994
In this paper, a new identification method is proposed for unknown digitally modulated input signals. The proposed identification method is implemented using a self-organized neural network which is based on the characteristic features of the symbol magnitude; the number of symbol magnitude levels, amplitude probability density and adjacent symbol magnitude ratio. The proposed method was performed for 5 QAM signals. The simulation results show that the self-organized neural network can accurately recognize all kinds of patterns even at SNR 8dB. The proposed method can be applied to the intelligent communication system on ISDN and multi-point polling networks.
음소를 인식의 기본 단위로 하는 소규모 음성 인식 시스템을 구현하기 위한 기초 연구로서 마 찰음(/ㅅ, ㅆ, ㅎ/) 과 파찰음(/ㅈ, ㅉ, ㅊ/) 에 대하여 지속시간, 평균패턴, 분산비를 이용하여 각 음소 의 특징을 분석하고 각 음소군 내에서의 식별에 유효한 parameter들을 추출하여 인식 실험을 실시하 였다. 지속시간의 분포, 평균패턴의 분포, 분산비의 분포를 이용하여 분석한 결과 6차원 정도의 cepstrum 계수만으로 마찰음 및 파찰음의 식별이 가능하고, 시간 방향의 정보는 음성의 시단으로부터 14 frame 정도의 특징을 인식 파라미터로 할 경우가 최적임을 알 수 있었다. 이를 이용한 인식실험 결과에서는 조음방법별로 분류된 음소군내의 각 음소에 대한 인식실험의 인식률 보다는 발음방법별 인식실험시의 인식률이 높게 나타나 동일 음소군 내에서의 각 음소에 대한 식별이 더 어려움을 알 수 있었고, 특징 파라미터의 길이를 음성의 시단으로부터 14 frame 정도로 했을 때 조음방법별 인식률은 평균 81.1%, 발음방법별 인식률은 평균 97.9%로 최고의 인식률을 나타내었다. 특징 파라미터의 길이 를 14 frame 이상으로 증가시켜도 인식률은 큰 변화가 없어 분석 결과를 잘 설명하고 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.