• Title/Summary/Keyword: 시스템 거푸집

Search Result 94, Processing Time 0.027 seconds

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork (영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.92-103
    • /
    • 2015
  • Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

Development of an Adjustable Beam Bracket for Beam Table Form - Conceptual Design and Structural Stability Analysis - (보 테이블 폼 전용 가변형 보 브라켓 개발 - 개념 디자인 제시 및 구조적 안정성 분석 -)

  • Hong, Yu-Na;Yeom, Dong-Jun;Yoo, Hyun-Seok;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.5
    • /
    • pp.70-80
    • /
    • 2018
  • Recently, the construction industry has lively utilized system forms to improve the work productivity and safety of form work, and the beam table form is one of them. However, the beam table form is used limitedly for the construction of buildings where the same beam size is applied to every floor. To make it possible to apply the beam table form to a building where different beam sizes are designed according to the uses of floors, it was analyzed that among the components of the beam table form, the beam bracket, should be able to flexible adjust the size of the beam form only with simple operation. Therefore, the purpose of this study is to propose the conceptual design of "an adjustable beam bracket for beam table form" that allows the adjustment of beam form size with simple operation and has excellent applicability to construction sites as well. In case this study's conceptual design of adjustable beam bracket for beam table form is fabricated into a real thing, it is expected that the beam table form will be applicable to even buildings where different beam sizes are designed according to the uses of floors, thereby contributing to the improvement in the work productivity and safety of form work.

공장형 일관 제작 시스템에 의한 콘크리트 케이슨 다단계 제작 및 운반공법 개발

  • 박정일;이원표;하성욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.821-824
    • /
    • 1999
  • 콘크리트 케이슨 제작장(Casting Bed)내에 케이슨의 제작 및 이동경로가 되는 이동통로(Trough)를 형성하고 거푸집과 이동통로를 겸할 수 있도록 고안한 소핏폼(Soffit Form)을 설치함으로써, 제작된 케이슨 하부로 케이슨 부양용 에어로 고(Aero Go)가 양방향으로 자유로이 이동할수 있게 하여 제작에서 운반까지의 각 단계별 공정이 일직선상에서 공장식 연속 조립공정으로 진행되며, 또한 별도의 대차 및 회수시설이 불필요한 공장형 일관 제작 시스템에 의한 다단계 케이슨 제작, 운반 및 진수방법이다.

  • PDF

An Experimental Study for Bond Stress between DFRCC and Carbon FRP Plank Used as a Permanent Formwork (영구거푸집으로 활용한 탄소섬유 FRP 판과 DFRCC 사이의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1687-1694
    • /
    • 2014
  • Recently FRP of carbon fibers is utilized as a repairing and reinforcing material for concrete structures. In this study, the bond performance between CFRP planks and ductile fiber reinforced cementitious composites was evaluated in order to develop a new system of concrete bridge deck to take advantage of the FRP planks of carbon fiber using as a permanent formwork. In order to strengthen the bonding between the FRP and cast-in-place concrete, an epoxy resin circulated in the market generally was fitted with a silica sand. The bond stress of ordinary concrete appeared in 2.11~5.43MPa and the bond stress of ductile fiber reinforced cementitious composites DC1 (RF4000) and DC2 (PP) respectively were 3.91~5.60MPa, 2.92~5.21MPa and the average bond stress of DC3 (RF4000+RSC15) and DC4 (PP+RSC15) were 4.80~5.58MPa, 5.57~5.89MPa.

Application of Ubiquitous Sensor Network at Construction Sites (건설 시공현장에서의 USN 활용)

  • Moon, Sung-Woo;Choi, Byoung-Young;Ji, Young-Eun;Seo, Ki-Jeong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.905-908
    • /
    • 2007
  • Concrete placement work is executed using temporary structures such as formwork, support, etc. The temporary structures could collapse when they are not properly supported, and need to be monitored for structural safety. This paper introduces a USN (Ubiquitous Sensor Network)-based monitoring system that are being tested at the Pusan National University for increasing structural safety. The system takes advantage of ubiquitous technologies together with a variety of sensors, which allows for wireless transmission of construction monitoring data. The temporary structures are constantly monitored to find out whether the structures are being supported in a stable condition. A field test is being conducted to acquire data, and use them for evaluating the safety condition of the construction operation.

  • PDF

Development of Integrated Wireless Sensor Network Device with Mold for Measurement of Concrete Temperature (콘크리트 온도 측정을 위한 거푸집 일체형 무선센서네트워크 장치 개발)

  • Lee, Sung Bok;Park, Seong Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • Temperature of fresh concrete can be effectively used to predict the strength of concrete being cured and make an informed decision for stripping the molds. A hygrothermograph and thermo-couple sensors that require an extensive wiring have been applied to measure a temperature of concrete at the early stage of the curing process on site. However, these methods have limits to provide the temperature data in real time due to harsh working environment including frequent cutting of wires. Therefore, this study is aiming at developing a device based on wireless sensor network to measure the temperature of concrete being cured in formwork. The result showed that the wireless sensor with probe type thermistor which is developed had the same temperature data compared to the existed wire type thermistor, and we confirmed the temperature history of concrete in real time for 28 days throughout the gateway by wireless network that collects the temperature data measured from specimens in laboratory. Also, the network device for transmission can be easily separated from the probe sensor part and reused consistently. If the wireless sensor network device developed uses in the field, the temperature management of concrete will be systematically conducted from at the early stage of the curing, and especially be effective for cold weather concrete construction. In addition, it will contribute to the establishment of advanced quality control system for concrete and productivity of supervisors on site will be increased in the future.

Algorithm for the Reinforced Concrete Framework Materials Take-off (철근콘크리트조의 골조물량산출 알고리즘)

  • Kim Tae-Hui;Hong Chae-Gon;Kim Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.114-121
    • /
    • 2003
  • The precise quantity of materials is not yet taken off by the CAD system although it has Influenced in design productivity and automatic estimate. And various estimate systems developed so far deal with the quantity take-off of building members separately, which caused to over-estimate the part of each member. Therefore, the purpose of this paper is to develop algorithms of more precise estimate than that of current estimate by solving boundary conditions of the connection parts of building members, such as column, girder, beam, wall and slab. The algorithms are proposed to take off the quantity of concrete and form work and they will be used for the estimate of building structure more precisely and automatically than ever.

Finite Element Analysis for Bending Behavior of Composite Beam with Perfobond FRP Used as a Permanent Formwork (퍼포본드 FRP를 영구거푸집으로 활용한 합성보의 휨거동에 관한 유한요소해석 연구)

  • Kook, Moo-Sung;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3280-3286
    • /
    • 2011
  • In recent years, many efforts have steadily been allocated to develop a new deck system in terms of its materials and structures in order to make up for the shortcomings of reinforced concrete deck. This study implemented and analyzed the verification for concrete composite beam with perfobond FRP as a permanent formwork and the tensile reinforcement, using non-linear finite element analysis program. Approximately 8-15% difference of ultimate failure load between numerical and experimental results were found and showed a similar figure of strain distribution in failure state.

A Proposal of Simplified Bond Stress-Slip Model between FRP Plank and Cast-In-Place Concrete (FRP 판과 현장타설 콘크리트 사이의 단순 부착모델 제안)

  • Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The use of hybrid FRP-concrete structures with a dual purpose of both permanent formwork and reinforcement, has been considered in some studies recently. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the pultruded plank and the cast-in-place concrete must be developed. Sand was bonded to the pultruded FRP plank using a commercially available epoxy system. In applying general analysis techniques to evaluate the performance of composite structures with FRP stay-in-place forming, it is essential that characteristics of the bond stress-slip relation be identified. In this study I would like to propose a simplified bilinear bond stress-slip model for FRP composite structures.

Development of an Automated Gangform Climbing System for Apartment Housing Construction - Structural Stability and Tower Crane Lifting Load Analysis - (공동주택 전용 갱폼 인양 자동화 기술의 개발 - 구조적 안정성 및 타워크레인 양중부하 분석 -)

  • Lee, Jeong-Ho;Yang, Sang-Hoon;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.48-59
    • /
    • 2012
  • Gangform, compared to the traditional forms, is a systemized form which can reduce construction duration and cost by the advantage of using it repeatedly. However, transportation and climbing process of the Gangform is highly dependant on the performance of tower crane. Gangform climbing process takes one day out of six to seven days of a structural work cycle. Tower cranes can not be used in other lifting works when they lift the Gangform during the structural work cycle, causing the delay in the construction project. Numerous efforts and researches have been done in domestic and international industry to solve such limitations of Gangform climbing process. Especially, "A Study on the Development of Automatic Gangform Climbing System for Apartment Housing Construction"has suggested a conceptual model which can climb the Gangform system without a tower crane. In this paper, the technical and economical feasibilities of previously proposed Automatic Gangform climbing system are examined by evaluating its structural stability and lifting load reduction effect.