• 제목/요약/키워드: 시스템 거푸집

검색결과 94건 처리시간 0.033초

강합성코어벽을 활용한 코너지지형 거푸집시스템 개발 (Development of Corner-Supported Auto Climbing Formwork System)

  • 홍건호;심우경
    • 대한건축학회논문집:구조계
    • /
    • 제35권7호
    • /
    • pp.171-178
    • /
    • 2019
  • Auto Climbing Formwork System (ACS) for construction of high-rise building is a construction method for automatically lifting the formwork system supported by the anchor on the pre-constructed concrete wall. It has excellent construction speed and quality, but it has the possibility of structural failure depending on the quality of concrete and also has low economical efficiency due to the use of foreign technology. In order to overcome these problems, this study conducted an optimum design for the development of a new concept of Corner Supported Auto Climbing System (CS-ACS) in conjunction with the development of corner steel-reinforced concrete core wall system. For the design the formwork system, the basic module and structural member compositions were planned, and the structural analysis program was used to analyze the optimum member's cross section and spacing. As a result, the horizontal displacement and the stress of the horizontal members were influenced by the spacing more than the cross-section of the member. On the other hand, vertical members did not affect the displacement and stress of the formwork system. The form tie was very effective in controlling the displacement when adjusting the spacing of the horizontal members, but when the spacing of the form tie is more than 1,500mm, it is analyzed that form tie is yielding in basic module. When the span of the formwork system is more than 30m, it is analyzed that the basic module needs to be changed because of the increase of overall displacement.

라이닝콘크리트의 양생시스템 개선

  • 유영선;김용하;문병탁;이현구;권기활;임주영
    • 자연, 터널 그리고 지하공간
    • /
    • 제13권2호
    • /
    • pp.41-49
    • /
    • 2011
  • 양북터널은 굴착과 동시에 라이닝콘크리트를 타설하였다. 터널굴착과 라이닝콘크리트의 동시시공을 위한 적정시공 Cycle을 결정하고, 이에 따른 양생기간과 양생온도를 설정하는 순으로 시험하였다. 라이닝콘크리트는 품질관리를 위해 보온장치를 탑재한 Sliding form과 양생대차를 운영하고, 균열을 최소화하기 위해 양생온도와 양생시간 및 탈형강도 등을 시험에 의해 결정하였다. 시험과정은 터널내부와 라이닝콘크리트 내부온도를 계절별로 측정하고, 양생온도별로 콘크리트의 강도를 측정하였다. 거푸집 탈형시 콘크리트 온도가 터널내부의 온도로 수렴하기까지는 $15{\sim}20^{\circ}C$의 차이로 측정되었고, 거푸집 탈형을 위한 콘크리트 초기강도 4MPa을 발현하는데는 양생온도에 따라 차이가 발생하지만 시공 Cycle에 적합한 양생시간은 약 20시간이고, 이 때의 양생온도는 $23^{\circ}C$ 이상이었다. 위의 시험결과대로 현장에서 라이닝콘크리트를 양생한 결과 시공 Cycle과 압축강도 및 콘크리트면의 외관 등이 만족한 결과를 나타내었다.

  • PDF

QFD를 이용한 비정형 거푸집 제작 시스템 개발 기초연구 (A Preliminary Study to Develop Manufacturing System of Free-Formed Form using QFD)

  • 이동윤;홍준호;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.60-61
    • /
    • 2017
  • In free-formed formwork, there is a problem that the productivity of the construction is deteriorated due to the expensive form, the long manufacturing period, and the high degree of construction difficulty. In order to solve these limitations, there is a need to research improvement from the phase of manufacturing free-formed form. Therefore, this study is to derive significant technical characteristics using QFD approach as a preliminary study to develop manufacturing system of the free-formed form for improving the productivity of free-formed construction formwork. This study employs the QFD to reflect users' needs into technical characteristics, and analyze correlation between users' requirements and the technical characteristics, then weights them by their importance.

  • PDF

그린프레임 현장생산용 거푸집 시스템 개발을 위한 구조설계 절차 (A Process for Structural Design of Form System for in-situ Production of Green Frame)

  • 임채연;김근호;나영주;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.29-30
    • /
    • 2012
  • The precast concrete column-beam structure, Green Frame, allows the main structural members such as precast concrete column and beam to be produced on the site, resulting in a reduction of transportation cost and the margin of plant. However, existing plywood from for in-situ production of precast concrete members has problems like putting in inordinate human resource, falling-off in quality and workability. To solve those problems, form system for in-situ production of precast concrete members shall be developed. In this regard, this study aims to analyze the structural concept of from system for in-situ production. The result of this study will use for development of form system for in-situ production.

  • PDF

도로교량 지지대 저판의 안전도

  • 조윤행;배승하;손기상
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 춘계 학술논문발표회 논문집
    • /
    • pp.213-217
    • /
    • 2003
  • 고가도로 또는 돌로 교량공사는 중요하고 또 소요에 따라 건설공사가 전국에서 진행되고 있다. 또한 이들 공사과정에서 발생되는 사고들이 있고 잠재위험성은 상존하고 있다. 상기 원인들에는 상부 콘크리트 스라브판 거푸집 지지대의 시스템, 지지대보강법, 지지대의 기초판, 기초판 저면의 토질상태, 그 위에 보조로 타설버림 콘크리트의 신뢰도 등을 들 수 있겠다.(중략)

  • PDF

지하층 합벽 무지주 시스템 거푸집의 적용성에 관한 연구 (A Study on the Applicability of Non-Supporting System Forms for Single Face Walls in Underground Construction)

  • 김재엽;안성훈;손영진
    • KIEAE Journal
    • /
    • 제8권2호
    • /
    • pp.87-92
    • /
    • 2008
  • Underground building constructions are recently more important because the ratio of underground area is increasing in the huge and high-rise building construction projects. For reducing the total building construction periods, it is required to reduce not only the over-ground structural work periods but also the underground structural work periods. Therefore, this study is proposed the non-supporting system forms for single face walls in underground building construction by one of the methods for reducing the underground structural work periods and investigated the applicability of the non-supporting system forms by analyzing the case-study in civil construction project. In regard of construction duration, the results of analyzing the case-study showed that the non-supporting system forms are better than the euro forms with soldier system for single face walls in underground building construction. In addition, it is showed that the cost of these two forms is similar and usage the working space and safety in non-supporting system forms are better that those of the euro forms with soldier system, too.

보용 시스템 거푸집의 전용계획 자동화 알고리즘 기초연구 (Basic study of reuse planning automation algorithms on system forms that are used on girders and beams)

  • 임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.7-8
    • /
    • 2015
  • Formwork accounts for 10% of the total construction cost and 30~40% of the framework cost, which is a fairly large part. Various system forms were developed for improved economic feasibility and constructability of formwork and for reduced construction duration. In general, the price of system forms per unit area is higher than that of the conventional method, yet the total construction cost can be reduced through higher reusability and constructability. However, if the reusability of forms is excessively increased to cut down the material cost, it may increase the construction duration, which will result in cost increase. On the other hand, if the reusability is decreased for reduction of construction duration, it may lead to cost increase caused by excessive input of materials. To solve such a problem, an algorithm for simplified reuse planning that meets the requirements of construction duration, cost, quality and safety is required. In this regard, the study intends to perform a fundamental research for development of reuse planning automation algorithms on system forms that are used on girders and beams.

  • PDF

교량 상판 콘크리트 타설용 거푸집 시스템의 기하학적 타당성 분석의 기초연구 (Basic study about Geometric feasibility Analysis of the System form for the Bridge Slab)

  • 성수진;임지영;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.197-198
    • /
    • 2014
  • The concrete work of bridge decks is performed in a high place, which may reduce safety and productivity. In addition, the conventional method for deck forms require a great deal of manpower, and a form (sheathing) board is damaged when removed after curing. As a result, the concrete deck work of bridge construction becomes the cause of delayed construction and increased cost. To solve these problems, SMART form, a system form, is developed. SMART form is a temporary device for easier installation and removal, by mounting it to the lower flange of a bridge girder and using a mechanical behavior of the form system for deck concrete pouring. For stable installation and removal of the developed SMART form, geometric behaviors should be analyzed to prove its validity. Furthermore, the validity of geometric behaviors when the SMART form size is altered in response to the various arrangement of bridge girders should be proved. Thus, the study is intended to analyze the geometric validity of the form system for bridge deck concrete pouring. The structural stability of the form system for bridge deck concrete pouring can be secured, which will be applied in the field.

  • PDF

교량 상판(바닥판) 콘크리트 타설용 시스템 거푸집 개발을 위한 요구조건 분석 (Requirement Analysis of the System Form for the Bridge Slab)

  • 김태구;임지영;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2014
  • Unlike general construction works, bridge construction is mostly done in a high place. The conventional deck form of bridge is installed between precast concrete girders using sleepers, bridging joints and plywoods, and after concrete is poured to the deck, the form materials are removed at high altitudes. When removing the form, it may be dropped on ground, damaging the materials and resulting in economic loss. In addition, safety accidents are likely as the works are performed in a high place, and as the manpower increases, the cost increases. Also, it is difficult to install and remove temporary equipment. Therefore, it is required to develop a system form that allows easier and quicker installation and removal by unskilled workers and ensures safety of workers. In this regard, the study is intended to analyze requirements for the system form for pouring concrete to bridge decks, which can be easily installed and removed. The study result will be used as basic information for development of the system form for pouring concrete to bridge decks.

  • PDF