• Title/Summary/Keyword: 시스템인식 기법

Search Result 1,574, Processing Time 0.024 seconds

Manufacturing process and food safety analysis of sous-vide production for small and medium sized manufacturing companies: Focusing on the Korean HMR market (중소규모 생산업체의 수비드 제품 생산을 위한 공정 및 안전성 분석: 한국 HMR 시장 중심으로)

  • Choi, Eugene;Shin, Weon Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The present study identified the restrictions on the use of sous-vide products in the Korean HMR market for small and medium-sized manufacturing companies. A detailed literature review revealed that the HMR market in Korea is close to saturation. Notably, the technologically advanced products produced using sous-vide seem to display significant potential to overcome market saturation. The sous-vide method differs from conventional cooking techniques and is characterized by maintenance of food texture along with flavor enhancement. However, due to the unfamiliarity of the manufacturers with this method and the unclear food safety regulations, mass food manufacturing companies do not agree on using this method; hence, sous-vide production is usually undertaken by small/medium sized companies catering primarily through online marketing portals. This study highlights the various restrictions to the implementation of sous-vide production, and discusses several practical implications of sous-vide production that would help users of this technique enter the HMR market.

A Study on the Impacters of the Disabled Worker's Subjective Career Success in the Competitive Labour Market: Application of the Multi-Level Analysis of the Individual and Organizational Properties (경쟁고용 장애인근로자의 주관적 경력성공에 대한 영향요인 분석: 개인 및 조직특성에 대한 다층분석의 적용)

  • Kwon, Jae-yong;Lee, Dong-Young;Jeon, Byong-Ryol
    • 한국사회정책
    • /
    • v.24 no.1
    • /
    • pp.33-66
    • /
    • 2017
  • Based on the premise that the systematic career process of workers in the general labor market was one of core elements of successful achievements and their establishment both at the individual and organizational level, this study set out to conduct empirical analysis of factors influencing the subjective career success of disabled workers in competitive employment at the multi-dimensional levels of individuals and organizations(corporations) and thus provide practical implications for the career management directionality of their successful vocational life with data based on practical and statistical accuracy. For those purposes, the investigator administered a structured questionnaire to 126 disabled workers at 48 companies in Seoul, Gyeonggi, Chungcheong, and Gangwon and collected data about the individual and organizational characteristics. Then the influential factors were analyzed with the multilevel analysis technique by taking into consideration the organizational effects. The analysis results show that organizational characteristics explained 32.1% of total variance of subjective career success, which confirms practical implications for the importance of organizational variables and the legitimacy of applying the multilevel model. The significant influential factors include the degree of disability, desire for growth, self-initiating career attitude and value-oriented career attitude at the individual level and the provision of disability-related convenience, career support, personnel support, and interpersonal support at the organizational level. The latter turned out to have significant moderating effects on the influences of subjective career success on the characteristic variables at the individual level. Those findings call for plans to increase subjective career success through the activation of individual factors based on organizational effects. The study thus proposed and discussed integrated individual-corporate practice strategies including setting up a convenience support system by reflecting the disability characteristics, applying a worker support program, establishing a frontier career development support system, and providing assistance for a human network.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.