• 제목/요약/키워드: 시선추적방법

검색결과 98건 처리시간 0.019초

실시간 눈과 시선 위치 추적 (Real Time Eye and Gaze Tracking)

  • 조현섭;유인호;김희숙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2839-2842
    • /
    • 2005
  • 본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90% 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.

  • PDF

사용자 응시지점 정보기반 시선 추적 시스템 신뢰도 측정 기법 (Reliability Measurement Technique of The Eye Tracking System Using Gaze Point Information)

  • 김병진;강석주
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권5호
    • /
    • pp.367-373
    • /
    • 2016
  • 본 논문에서는 사용자 시선 추적에 사용되는 시선 추적기의 정확도 향상 및 이를 분석하는 방법을 제안한다. 제안하는 방법에서는 시선 좌표와 색 정보를 추출하여 정확한 동공 정보를 기반으로 만들어진 사용자 profile 정보를 추출한 후 이를 기반으로 시선 추적기가 부착된 디스플레이에서 고르게 높은 정확도를 유지 하도록 한다. 이 때 사용자 profile 정보 추출 시 응시 시간에 따른 정확도의 변화 또한 추정하여 최적의 파라미터 값을 추출한다. 시선 추적의 정확도에 대한 실험 결과 짧은 시간으로 특정지점을 응시할 경우 시선 추적의 정확도가 낮게 측정되지만, 응시 시간을 2초 이상의 유지 시 80% 이상의 높은 시선 추적 정확도가 측정됨을 알 수 있었다.

단안 카메라 환경에서의 시선 위치 추적 (A Gaze Detection Technique Using a Monocular Camera System)

  • 박강령;김재희
    • 한국통신학회논문지
    • /
    • 제26권10B호
    • /
    • pp.1390-1398
    • /
    • 2001
  • 시선 위치 추적이란 사용자가 모니터 상의 어느 지점을 쳐다보고 있는 지를 파악해 내는 기술이다. 시선 위치를 파악하기 위해 본 논문에서는 2차원 카메라 영상으로부터 얼굴 영역 및 얼굴 특징점을 추출한다. 초기에 모니터상의 3 지점을 쳐다볼 때 얼굴 특징점들은 움직임의 변화를 나타내며, 이로부터 카메라 보정 및 매개변수 추정 방법을 이용하여 얼굴특징점의 3차원 위치를 추정한다. 이후 사용자가 모니터 상의 또 다른 지점을 쳐다볼 때 얼굴 특징점의 변화된 3차원 위치는 3차원 움직임 추정방법 및 아핀변환을 이용하여 구해낸다. 이로부터 변화된 얼굴 특징점 및 이러한 얼굴 특징점으로 구성된 얼굴평면이 구해지며, 이러한 평면의 법선으로부터 모니터 상의 시선위치를 구할 수 있다. 실험 결과 19인치 모니터를 사용하여 모니터와 사용자까지의 거리를 50∼70cm정도 유지하였을 때 약 2.08인치의 시선위치에러 성능을 얻었다. 이 결과는 Rikert의 논문에서 나타낸 시선위치추적 성능(5.08cm 에러)과 비슷한 결과를 나타낸다. 그러나 Rikert의 방법은 모니터와 사용자 얼굴까지의 거리는 항상 고정시켜야 한다는 단점이 있으며, 얼굴의 자연스러운 움직임(회전 및 이동)이 발생하는 경우 시선위치추적 에러가 증가되는 문제점이 있다. 동시에 그들의 방법은 사용자 얼굴의 뒤 배경에 복잡한 물체가 없는 것으로 제한조건을 두고 있으며 처리 시간이 상당히 오래 걸리는 문제점이 있다. 그러나 본 논문에서 제안하는 시선 위치 추적 방법은 배경이 복잡한 사무실 환경에서도 사용가능하며, 약 3초 이내의 처리 시간(200MHz Pentium PC)이 소요됨을 알 수 있었다.

  • PDF

착용형 양안 시선추적기와 기계학습을 이용한 시선 초점 거리 추정방법 평가 (Evaluation of Gaze Depth Estimation using a Wearable Binocular Eye tracker and Machine Learning)

  • 신춘성;이건;김영민;홍지수;홍성희;강훈종;이영호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권1호
    • /
    • pp.19-26
    • /
    • 2018
  • 본 논문은 가상현실 및 증강현실을 위해 양안식 눈추적기 기반의 시선 깊이 추정 기법을 제안한다. 제안한 방법은 먼저 양안식 눈추적기로부터 안구 및 시선과 관련된 다양한 정보를 획득한다. 이후 획득된 정보를 바탕으로 다층퍼셉트론 알고리즘 기반의 시선 추적과 인식 모델을 통해 눈 시선 깊이를 추정한다. 제안한 방법을 검증하기 위해 13명의 참여자를 모집하고 개인별 시선 추적과 범용 시선 추적에 대한 성능을 분석하였다. 실험결과 개인별 모델에서는 90.1%, 그리고 전체 사용자를 대상으로 한 범용 모델에서는 89.7%의 정확도를 보였다.

HCI를 위한 시선추적 시스템에서 분해능의 추정기법 (Resolution Estimation Technique in Gaze Tracking System for HCI)

  • 김기봉;최현호
    • 융합정보논문지
    • /
    • 제11권1호
    • /
    • pp.20-27
    • /
    • 2021
  • 시선추적은 NUI 기술 중의 하나로 사용자가 응시하는 곳을 추적을 통해 알아낸다. 이 기술은 텍스트를 입력하거나 GUI를 제어할 수 있도록 하고 더 나아가 사용자의 시선 분석도 가능하게 하여 상업 광고 등에 응용될 수 있도록 한다. 시선추적 시스템은 영상의 품질과 사용자 움직임의 자유도에 따라 허용범위가 달라진다. 따라서 시선추적의 정밀도를 미리 추정하는 방법이 필요하다. 시선추적의 정확도는 하드웨어적인 변수 외에도 시선추적 알고리즘을 어떻게 구현하느냐에 따라 많은 영향을 받는다. 이에 따라 본 논문에서는 영상에서 동공 중심의 가능한 최대 이동 거리의 추정으로 동공 중심이 한 픽셀 움직일 때 시선은 몇 도가 바뀌는지 즉, 이론적 최대 분해능이 얼마인지를 추정하는 방법을 제시한다.

실시간 눈과 시선 위치 추적 (Real Time Eye and Gaze Tracking)

  • 황선기;김문환;차샘;조은석;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.61-69
    • /
    • 2009
  • 본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였고 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.

  • PDF

시선인식을 이용한 지능형 휠체어 시스템

  • 김태의;이상윤;권경수;박세현
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.88-92
    • /
    • 2009
  • 본 논문에서는 시선인식을 이용한 지능형 휠체어 시스템에 대해 설명한다. 지능형 휠체어는 초음파센서를 이용하여 전동휠체어가 장애물을 감지하여 회피할 수 있게 하고, 조이스틱을 움직이기 힘든 중증 장애인을 위해 시선인식 및 추적을 이용하여 전동휠체어를 움직일 수 있게 하는 인터페이스를 제안한다. 지능형 휠체어는 시선인식 및 추적 모듈, 사용자 인터페이스, 장애물 회피 모듈, 모터 제어 모듈, 초음파 센서 모듈로 구성된다. 시선인식 및 추적 모듈은 적외선 카메라와 두개의 광원으로 사용자 눈의 각막 표면에 두 개의 반사점을 생성하고, 중심점을 구한 뒤, 동공의 중심점과 두 반사점의 중심을 이용하여 시선 추적을 한다. 시선이 응시하는 곳의 명령어를 사용자 인터페이스를 통해서 하달 받고, 모터 제어 모듈은 하달된 명령과 센서들에 의해 반환된 장애물과의 거리 정보로 모터제어보드에 연결되어 있는 두 개의 좌우 모터들을 조종한다. 센서 모듈은 전등휠체어가 움직이는 동안에 주기적으로 센서들로부터 거리 값을 반환 받아 벽 또는 장애물을 감지하여 장애물 회피 모듈에 의해 장애물을 우회 하도록 움직인다. 제안된 방법의 인터페이스는 실험을 통해 시선을 이용하여 지능형 휠체어에 명령을 하달하고 지능형 휠체어가 임의로 설치된 장애물을 효과적으로 감지하고 보다 정확하게 장애물을 회피 할 수 있음을 보였다.

  • PDF

실시간 눈과 시선 위치 추적 (Real Time Eye and Gaze Tracking)

  • 조현섭;김희숙
    • 한국산학기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.195-201
    • /
    • 2005
  • 본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.

  • PDF

실시간 눈과 시선 위치 추적 (Real Time Eye and Gaze Tracking)

  • 이영식;배철수
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.477-483
    • /
    • 2004
  • 본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참석하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.

디퓨전 오토인코더의 시선 조작 데이터 증강을 통한 시선 추적 (Gaze-Manipulated Data Augmentation for Gaze Estimation With Diffusion Autoencoders)

  • 문강륜;김영한;박용준;김용규
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.51-59
    • /
    • 2024
  • 시선 벡터 정답값을 갖는 대규모 데이터의 수집은 시선 추적 분야에서 많은 비용을 필요로 한다. 본 논문에서는 원본 사진의 시선을 수정하는 데이터 증강 기법을 사용하여 제한된 개수의 시선 정답값이 주어진 상황에서 시선 추적 모델의 정확도를 향상시키는 방법을 제안한다. 시선 구간 다중 클래스 분류를 보조 작업으로 학습하고, 디퓨전 오토인코더의 잠재 변수를 조정하여 원본 사진의 시선을 편집한 사진을 생성한다. 기존의 얼굴 속성 편집과 달리, 우리는 이진 속성이 아닌 시선 벡터의 피치와 요를 지정한 범주 내로 변경하며, 편집된 사진을 시선 추적 모델의 증강된 학습 데이터로 활용한다. 시선 정답값이 5만 개 이하일 때 준지도 학습에서의 시선 추적 모델의 정확도 향상은 제안한 데이터 증강 기법의 효과를 입증한다.