• Title/Summary/Keyword: 시뮬레이션

Search Result 28,788, Processing Time 0.053 seconds

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.

An Analysis of The Relationship Among Nursing Students' Perception of Target Vulnerability and Target Advocacy, Child Rights Awareness, and Child Abuse Reporting Intention (간호대학생이 지각한 대상자 취약성 및 옹호, 아동권리인식, 아동학대 신고의도 간의 관계 분석)

  • Ji-Ah Song;Jae Woo Oh
    • Journal of Industrial Convergence
    • /
    • v.22 no.3
    • /
    • pp.155-163
    • /
    • 2024
  • Nursing students, as prospective nurses, are expected to act as child abuse reporters and advocates for child targets. Therefore, this study aimed to provide a basis for developing a child abuse prevention education program for nursing students by determining the extent of nursing students' perceived target vulnerability and target advocacy, child rights awareness, and intention to report child abuse, and analyzing the relationships among the variables. This study is a descriptive survey study to identify the effects of target vulnerability, target advocacy, and child rights awareness on intention to report child abuse among 154 nursing students, and the data collection period was from July 3 to July 31, 2023, and the collected data were analyzed using SPSS 25.0 program. As a result of identifying the influential factors on nursing students' intention to report child abuse, child abuse education, championing social justice as a sub-variable of target advocacy, and target vulnerability, the explanatory power of these variables was 35.8%. Based on the results of this study, it is suggested that it is necessary to increase activities through the development and application of simulation education based on actual clinical cases in order to increase nursing students' interest in and education about child abuse.

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.

Development of Korean Lunar Highland Soil Simulant (KIGAM-L1) (한국형 달 고원 모사토(KIGAM-L1) 개발)

  • Tae-Yun Kang;Eojin Kim;Kyeong Ja Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.121-136
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO), launched in August 2022, is successfully carrying out its mission. Korea's lunar lander and rover programs are expected to proceed in the future. To successfully carry out the mission after the lunar lander has landed on the surface, the performance of the equipment to be mounted should be checked in a laboratory environment similar to the Moon. Scientists and engineers of several countries, including the United States and China, use lunar soil simulant which is developed to resemble lunar soil for simulating the surface of the lunar landing site. Several lunar probe landing sites are being discussed in Korea, and lunar soil simulants such as Korea Hanyang Lunar Simulant-1 (KOHLS-1), Korea Aerospace University Mechanical Lunar Simulants (KAUMLS), and Korea Lunar Simulant-1 (KLS-1), which are similar to the characteristics of lunar mare soil, have been developed. However, those simulants are not useful if the landing site is chosen as a highland area. In this study, we introduce the process of developing KIGAM-L1, a lunar highland soil simulant similar to the chemical composition of the Apollo 16 lunar soil sample and the particle size distribution of lunar soil sample 60500-1, in case the lunar lander lands at highland area.

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

Evaluation of Hazardous Zones by Evacuation Scenario under Disasters on Training Ships (실습선 재난 시 피난 시나리오 별 위험구역 평가)

  • SangJin Lim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.200-208
    • /
    • 2024
  • The occurrence a fire on a training ship with a large number of people on board can lead to severe casualties. Hence the Seafarers' Act and Safety Life At Sea(SOLAS) emphasizes the importance of the abandon ship drill. Therefore, in this study, the training ship of Mokpo National Maritime University, Segero, which has a large number of people on board, was selected as the target ship and the likelihood and severity of fire accidents on each deck were predicted through the preliminary hazard analysis(PHA) qualitative risk assessment. Additionally, assuming a fire in a high-risk area, a simulation of evacuation time and population density was performed to quantitatively predict the risk. The the total evacuation time was predicted to be the longest at 501s in the meal time scenario, in which the population distribution was concentrated in one area. Depending on the scenario, some decks had relatively high population densities of over 1.4pers/m2, preventing stagnation in the number of evacuees. The results of this study are expected to be used as basic data to develop training scenarios for training ships by quantifying evacuation time and population density according to various evacuation scenarios, and the research can be expanded in the future through comparison of mathematical models and experimental values.

Diffusion Characteristics Based on the Gas Leakage Direction and Air Change per Hour in a Enclosed Space on Board a Ship (밀폐된 선내 공간에서 가스 누출방향과 환기횟수에 따른 확산특성)

  • Seong Min Lee;Ha Young Kim;Byeol Kim;Kwang Il Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Hydrogen is being touted as one of the energy sources to combat the climate change crisis. However, hydrogen can leak into enclosed spaces, rise to the ceiling, accumulate, and cause fires and explosions if it encounters an ignition source. In particular, ships that transport hydrogen or use it as a fuel comprise multiple enclosed spaces. Therefore, the dif usion characteristics within these spaces must be understood to ensure the safe use of hydrogen. The purpose of this study is to experimentally determine the diffusion characteristics of helium, which has similar properties to hydrogen, in a closed space on board a ship, and to determine the change in the oxygen concentration along the leakage direction as the air change per hour(ACH) increases to 25, 30, 35, 40, and 45 through CFD simulation. The study, results revealed that the oxygen concentration reduction rate was 2% for leakage in the -z direction and 1% for leakage in the +x and +z directions, and the ventilation time was 15 min 30 s for leakage in the -z direction, 7 min for leakage in the +x direction, and 9 min for leakage in the +z direction, showing that differences existed in the oxygen concentration and ventilation time depending on the leakage direction. In addition, no significant difference was observed in the rate of oxygen concentration reduction and ventilation time in all leakage directions from the ACH of 35 and above in the experimental space. Therefore, because the oxygen concentration and ventilation time were not improved by increasing the ACH, 35 was noted as the optimal ACH in this experimental environment.

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.