• Title/Summary/Keyword: 시멘트 수화

Search Result 652, Processing Time 0.025 seconds

Effect of Various Superplasticizers on the Hydration of Cement Paste (시멘트페이스트 수화 반응에 미치는 고유동화제의 영향성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Lee Young-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1019-1024
    • /
    • 2005
  • To research effects of various chemical superplasticizers(Lignosulfonic acid, Naphthalene sulfonated formaldehyde condensate, melamine sulfonated formaldehyde condensate, and Polycarboxylate) on the hydration of cement, experiments involving XRD, SEM, and DSC have been analysed with cement paste specimens. Regardless of types and dosages of superplasticizers, hydration reaction of specimen applied superplasticizer was delayed to 3 day, but then it showed similarity to plain which don't add superplasticizer. Moreover, the hydrating rate of cement paste was retarded as dosage of superplasticizer was increased. Also, kinetics related with hydrate of cement paste was slow in order of lignosulfonic acid, polycarboxylate, melamine and naphthalene sulfonated formaldehyde condensate. Nevertheless, when all kinds of chemical admixtures were used, morphologies of these hydrates were denser and more uniform than those of plain.

A Study on the Basic Properties of Concrete and Characteristics of Blended Low Heat Cement (혼합형 저발열 시멘트의 특성과 콘크리트 기초 물성에 관한 연구)

  • 송용순;한정호;강석화;김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.177-187
    • /
    • 1998
  • 최근 국내에서 해양 구조물, 장대 교량의 하부구조물, LNG저장탱크 등 매스콘크리트의 증가추세에 따라 구조물의 고내구성과 관련하여 시멘트의수화열에 의한 온도균열의 발생을 최소화 시킬 수 있는 3성분계 혼합형 저발열시멘트가 개발되어 실 구조물의 적용단계에 있으나, 저발열시멘트가 개발되어 실 구조물의 적용단계에 있으나 저발열시멘트의 특성에 대한 전반적인 연구보고가 국내에서는 미진한 실정이다. 따라서 본 연구에서는 3성분계 혼합형 저발열시멘트의 특성 및 코\ulcorner리트의기초물성을 1종 보통포틀랜트 시멘트, 5종 내황산염시멘트, 슬래그시멘트와 비교하였다. 글 결과 저발열 콘크리트의 찹축강도는 초기재령에서 강도발현률이 적은 반면 장기강도발현률은 상당히 큰 경향을 보였다. 또한 수화열은 1종시멘트를 사용한 콘크리트에 비하여 1/3~1/2정도로 매스콘크리트의 수화열을 대폭적으로 저감시킬 수 있을 뿐만 아니라 염소이온에 대한 저항성이 상대적으로 높게 나타나 거대 해양 구조물의 적용에 매우 유리한 시멘트로 판단되었다.

A New Approach of Strength Prediction of High Strength Concrete by the Equivalent Age (적산온도기법에 의한 고강도콘크리트의 강도예측)

  • Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 2004
  • The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the strength of concrete is related to the degree of hydration of the cement in concrete. The rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Therefore, the aim of the study is to investigate of the correlation between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature.

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

The Effect of STPP on Compressive Strength of Sodium Silicate-Cement Grout (STPP가 규산계 시멘트 주입재의 강도에 미치는 영향)

  • Chun, Byungsik;Yang, Hyungchil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.25-34
    • /
    • 2006
  • Portland cement and sodium silicate are widely used as the main components of the injection, which are used to prevent flow and improve ground condition. The main problem of the injection material is the leaching of the sodium hydroxite and silicate due to the limited reaction with the cement. This paper studies the effect of cement hydration retarder on the compressive strength of the sodium silicate - cement gel. A series of tests, including digital-type testing machine, X-ray diffraction and scanning electron microscope are performed. Results clearly demonstrate that the sodium tripolyphosphate, which is the cement hydration retarder in the test, significantly improves the initial strength of the homogel.

  • PDF