• Title/Summary/Keyword: 시공간 부호

Search Result 125, Processing Time 0.024 seconds

Distributed satellite-terrestrial diversity schemes using turbo coded STC (터보부호화된 시공간부호를 이용한 위성-지상 분산 다이버시티 기법)

  • Park, Un-Hee;Kim, Young-Min;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.28-33
    • /
    • 2009
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction. Based on these previous study results, we present various cooperative diversity techniques by combing STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

  • PDF

A Study of MIMO FTN Scheme based on Layered Space Time Code using Turbo Code (터보부호를 이용한 계층적 시공간 부호기반 MIMO FTN 전송기법 연구)

  • Park, Gun-Woong;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.895-901
    • /
    • 2016
  • The next generation wireless and satellite communications require high transmission efficiency and high reliability to provide various services with subscribers. To satisfied these requirements, incorporated MIMO (Multiple Input Multiple Output) system with FTN (Faster Than Nyquist) techniques based on layered space time coded method are considered in the paper. To improve performance, STTC (Space Time Trellis Code) was employed as an inner code. As the same as SISO (Single Input Single Output) system, the outer codes are turbo codes. In receiver side, BCJR algorithm is used for STTC decoding in order to eliminate interferences induced by FTN transmission. They can yield significantly increased the data rates and improved link reliability without additional bandwidth. Therefore, we proposed a new decoding model for MIMO FTN model and confirmed that performance was improved compared to conventional SISO model according to amount of interference for FTN.

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.

Space-Time Concatenated Convolutional and Differential Codes with Interference Suppression for DS-CDMA Systems (간섭 억제된 DS-CDMA 시스템에서의 시공간 직렬 연쇄 컨볼루션 차등 부호 기법)

  • Yang, Ha-Yeong;Sin, Min-Ho;Song, Hong-Yeop;Hong, Dae-Sik;Gang, Chang-Eon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • A space-time concatenated convolutional and differential coding scheme is employed in a multiuser direct-sequence code-division multiple-access(DS-CDMA) system. The system consists of single-user detectors (SUD), which are used to suppress multiple-access interference(MAI) with no requirement of other users' spreading codes, timing, or phase information. The space-time differential code, treated as a convolutional code of code rate 1 and memory 1, does not sacrifice the coding efficiency and has the least number of states. In addition, it brings a diversity gain through the space-time processing with a simple decoding process. The iterative process exchanges information between the differential decoder and the convolutional decoder. Numerical results show that this space-time concatenated coding scheme provides better performance and more flexibility than conventional convolutional codes in DS-CDMA systems, even in the sense of similar complexity Further study shows that the performance of this coding scheme applying to DS-CDMA systems with SUDs improves by increasing the processing gain or the number of taps of the interference suppression filter, and degrades for higher near-far interfering power or additional near-far interfering users.

Stereo Video Coding with Spatio-Temporal Scalability for Heterogeneous Collaboration Environments (이질적인 협업환경을 위한 시공간적 계위를 이용한 스테레오 비디오 압축)

  • Oh Sehchan;Lee Youngho;Woo Woontack
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1150-1160
    • /
    • 2004
  • In this paper, we propose a new 3D video coding method for heterogeneous display systems and network infrastructure over enhanced Access Grid (e-AG) using spatio-temporal scalability defined in MPEG-2. The proposed encoder produces several bit-streams for providing temporally and spatially scalable 3D video service. The generated bit-streams can be nelivered with proper spatio-temporal resolution according to network bandwidths and processing speeds, visualization capabilities of client systems. The functionality of proposed spatio-temporal scalability can be exploited for construction of highly scalable 3D video service in heterogeneous distributed environments.

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

Effect of Imperfect Channel Knowledge on M-QAM SER Performance of Space-Time Block Codes (불완전한 채널 정보가 시공간 블록 부호의 M-QAM 심볼에러율 성능에 미치는 영향)

  • 고은석;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.99-108
    • /
    • 2002
  • In this paper, we discuss the effect of imperfect knowledge of the transmission channel on the M-QAM SER performance of space-time block codes. Because the channel knowledge is used for decoding of space-time block codes, the imperfect channel knowledge can degrade the performance of space-time block codes. In this paper, the channel mismatch error is modeled as errors in the estimation of the channel due to noise and errors due to the variation of the channel. We derive the analytic expression for the symbol error rate (SER) as a function of the average signal to interference ratio (SIR) per channel including the terms of channel mismatch errors. Simulation results show that the acceptable levels of channel estimation error is 10$\^$-3/ and that of channel variation is f$\_$d/T$\_$B/=0.001 at SNR=20dB in space-time block codes.

Improved Super-Orthogonal Space Time Codes for Fast Rayleigh Fading Channels (고속 레일리 페이딩 채널에 적합한 개선된 초직교 시공간 격자 부호)

  • Kim, Chang-Joong;Heo, Seo-Weon;Lee, Ho-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.820-825
    • /
    • 2007
  • Super-orthogonal space-time trellis code (SOTTC) uses the expanded set of the orthogonal space-time block code to obtain coding gain and diversity gain without loss of transmit rate. In SOSTTCs, signal set expansions are performed by rotating the first column of the code matrix. The rotating phases used previously were selected to avoid the signal constellation expansion rather than the performance improvement. In this paper, we make a design criterion to select the proper rotating phase to improve the performance of SOSTTCs for fast Rayleigh fading channels. In addition, we design improved SOSTTCs by using the proper rotating phase. Simulation results are also provided to confirm our SOSTTCs are superior to the previous SOSTTCs in the view of BER performance.

Efficient Decoding Algorithm for Rate-2, $2{\times}2$ Space-Time Codes (Rate-2인 $2{\times}2$ 시공간 부호를 위한 효율적인 복호 알고리즘)

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • Recently, a rate-2, $2{\times}2$ space-time code with simple ML decoding has been designed. Though the simple ML decoding algorithm does reduce the ML decoding complexity, there is still need for improvement. In this paper, we propose an efficient decoding algorithm for the rate-2, $2{\times}2$ space-time code using interference cancellation techniques with performance virtually identical to that of ML decoding. Also, the decoding complexity of the proposed algorithm is significantly reduced compared to the conventional simple ML decoding, especially for large modulation orders.