• Title/Summary/Keyword: 시공간에 대한 해석

Search Result 964, Processing Time 0.029 seconds

A Structural Analysis Model for the Initial Configuration of a Suspension Bridge Considering the Erection Method of Stiffening Girders (보강형의 시공방법을 고려한 타정식 현수교의 초기형상해석 모델)

  • Ko, Seong Seok;Kang, Sung Hoo;Park, Sun Joon;Jung, Jae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.337-346
    • /
    • 2009
  • To determine the initial configuration of the suspension bridge appropriate idealization model and analysis procedure are proposed as considering the boundary and loading conditions of stiffening girder during the erection. The construction stages of a suspension bridge are divided into two steps which are the first stage of the erection and the second stage of the completion in terms of the erection time of stiffening girders, and depending upon such an erection step the initial configuration analysis is classified the first configuration analysis and the revision analysis of the second configuration. The boundary and loading conditions and the analysis procedures for each stage are suggested and the results are verified by comparing with existing data. The results show that the proposed method provides better solution compared to the results using existing method.

Three Dimensional Numerical Analysis of Piled Raft on Soft Clay (연약지반에 시공된 Piled Raft 기초의 3차원 거동 분석)

  • Lee, Jin-Hyung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.63-75
    • /
    • 2007
  • Piled raft is known to be an unfavorable foundation type in soft clay because foundation is associated with both excessive settlement and bearing capacity failure problems. Despite these reasons, in recent decades, an increasing number of structures have been constructed over soft clay area, piled raft concepts arouse interest as the foundation of structures on soft clay area becomes popular. This study described 3 dimensional behavior of piled raft on soft clay based on a numerical study using 3D finite element method. A series of numerical analyses were performed for a various pile lengths and the pile configurations on the raft were subjected to vertical uniform or point loading. Based on the results of the parametric study, comparisons were made among the effect of loading type, various pile length and configurations, and the load-settlement behavior and load sharing characteristics of piled raft were also evaluated. From the results, the characteristic of piled raft on soft clay was examined.

The Numerical Analysis of Two-Dimensional Electrokinetic Remediation Characteristics Dependent on Electrode Configurations (전극배치에 따른 2차원적 동전기 정화 특성의 수치해석)

  • Kim, Soo Sam;Han, Sang Jae;Kim, Byung Ill
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.291-301
    • /
    • 2006
  • In this study the characteristics of electrokinetic remediation, which is dependent on a various electrode configuration, was predicted from 2-D numerical analysis program (HERO-2D). Based on the predicted results for one dimensional and two dimensional electrode configurations, the optimized electrode configuration was determined by analyzing remediation efficiency, consumed electric power, installation cost of electrode and so on. When proposed electrode configurations were applied for in-situ remediation of the soils contaminated by heavy metals, the electrode configuration of high remediation efficiency should be chosen in case the high removal effect would be required, and one dimensional electrode configuration should be chosen in case the hard field works would be expected. Because the rectangular electrode configuration is better than others for consumed electric power, remediation efficiency per unit power, installation cost of electrode and so on, it can obtain the best results for the cost reduction.

A Study on the Behavior of Steel Curved Girder Bridge during Construction (곡선 강박스 거더교의 가설중 거동 파악 연구)

  • Gil, Heung Bae;Pae, Chang Kyu;Kang, Sang Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.511-518
    • /
    • 2005
  • The behavior of steel curved bridges is more complicated than straight bridges, thus the analysis, design and construction process of curved bridges require much more attention. In design of curved bridges, the grillage analysis using general structural analysis program or special program is mainly used. Comparative study in coherence between these analytical results and actual behavior of curved bridges has been rarely conducted. To study the behaviour of curved bridges and verify the current design method, field measurements and analyses using general structural analysis program and 3-D refined analysis program were carried out for simple and continuous bridges in this study. The study focused on the behavior of curved steel bridges during construction. Measured and analytical results had quantitative difference mutually, but there were qualitatively similar. Stress variations in transverse direction of flange were observed and grillage analysis models yielded more conservative values than 3-D refined analysis models.

Enhancing Seismic Performance of Exterior R.C. Beam-Column Connections Using Headed Bars (헤디드 바를 사용한 외부 철근콘크리트 보-기둥 접합부의 내진성능 향상)

  • Shin, Hyun Oh;Yang, Jun Mo;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • The reinforced concrete beam-column connections are in lack of constructability and are likely to show anchorage failure because of the complex details of joint regions. Under seismic loads, a destruction of the column or the beam-column joint leads to collapse of the whole structures. For this reason, the safety of structures has to be guaranteed by following procedures which are based on the strong column-weak beam design concept: 1) failure of beam by generating plastic hinge in the beam maintained a certain distance from the surface of column, 2) failure of column or beam-column joint. In this study, headed bars were used as longitudinal reinforcements of beam and joint reinforcements in order to improve the strength and constructability of joint and to relocate plastic hinge. The finite element analyses (FEAs) were performed to the reinforced concrete beam-column joints utilizing headed bar reinforcements. To verify the availability of the analysis models, the FEAs for experimental tests performed by previous researchers were conducted and compared with the experimental results. Additional variables are also considered to confirm the excellence of headed bars. Analysis results indicate that the constructability of beam-column connections can be improved by using headed bars for the full anchorage of longitudinal reinforcements of beam under similar structural performance. In addition, the plastic hinge was relocated to the intended place by using headed bars as joint reinforcements. Under cyclic displacement loading, the energy dissipation capacity and ultimate stress were increased and the decrease in stiffness was minimized.

Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Steel Clip-Type Implements Subjected to Cyclic Lateral Loading (반복 횡하중이 작용하는 강재 클립형 연결장치로 결속된 철근 콘크리트 기둥의 비선형 유한요소해석)

  • Yong Joo Kim;Byong Jeong Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.243-250
    • /
    • 2023
  • Both ends of the hoop reinforcement in the reinforced concrete (RC) columns subjected to lateral loading must necessarily be bent by 135° so as to ensure a sufficient level of ductility. However, as this reinforcement is extremely difficult to construct, this requirement is often not satisfied at construction sites. This study entailed an experimental investigation on RC columns subjected to cyclic lateral loading equipped with steel clip-type implements that were developed to replace the complicated 135° hoop reinforcement details. Four RC column specimens were manufactured, and the main test parameters included the use of high-strength concrete and steel clip-type implements. Furthermore, three-dimensional finite element models were employed to evaluate the structural performances of the test specimens via nonlinear analyses. The results of the test and finite element analyses indicate that the RC columns with the steel clip-type implements exhibit structural performances equal to or better than those with the 135° hoop reinforcement details. Further, the finite element analysis results agree well with the test results.

A Study on Influence of Constructed Bridge Abutment in Landfill Slope under Laterally Displacing (측방유동 발생 시 성토사면에 시공된 교대의 영향에 대한 연구)

  • Lee, Hangyu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.31-41
    • /
    • 2013
  • The damage caused by lateral movement occurs frequently on site where abutment or retaining wall was built on soft ground along with embankment behind and the study on stability of abutment against lateral movement has been mostly focused on soft ground. However lateral movement occurs not only on soft ground but also on embankment slope which causes the impact on structure. The bridges built in Korea are mostly on mountainous area than soft ground. This study is intended to analyze the ground behavior resulting from lateral movement using finite element analysis method to the section as well as propose the basic data for abutment design on embankment slope through the analysis of the outcome of reinforcement method. As a result, when it comes to the reinforcement with soil surcharge and stabilized pile in slope, lateral movement was reduced by 4~30% and displacement on bearing shoe on abutment was reduced by 2~13%. On the contrary, when reinforced with EPS, lateral float was reduced by 97% and maximum horizontal displacement of bearing shoe on abutment was reduced by 95%. Thus, it's necessary to identify the design technique which is applicable to domestic condition through additional tests and more reliable study using numerical analysis and comparing the measured values shall follow.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

A Study for the Reinforcement of Concrete Beam and Slab with Composite Beam (복합재료보를 이용한 콘크리트 보와 슬래브의 보강에 대한 연구)

  • Kwon, Min-Ho;Kim, Doo-Kie;Shin, Hong-Young;Kim, Ki-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.255-258
    • /
    • 2009
  • 본 논문에서는 최근 건축구조물의 보수보강에 사용되고 있는 복합재료보의 정확한 보강성능을 규명하기 위하여 다양한 실물 실험을 수행하였으며 실험 결과를 검토하여 실제 보강효과를 검증하였다. 콘크리트의 재료비선형을 고려할 수 있는 수치해석 기법으로 실험결과를 재현하여 보강효과를 수치해석적으로 검증하였으며 복합재료보를 이용하였을 경우 확보할 수 있는 보강효과에 대하여 연구하였다. 일반적인 철근콘크리트 구조물에 복합재료보를 이용하여 보강하였을 경우, 약 80% 내외의 하중 증가효과를 확보할 수 있었다. 또한 수치해석을 통하여 보강효과를 검토한 결과, 실물실험과 유사한 결과를 얻을 수 있었으며 복합재료보의 시공시 사용되는 전단연결재의 효과를 고려한다면 거의 동일한 결과를 얻을 수 있을 것으로 판단된다. 현재까지의 연구결과, 복합재료보를 이용하여 구조물을 보강한 경우, 취성이 증가하는 것으로 알려져있으나 추가적인 연구를 통하여 연성을 확보할 수 있는 복합재료보의 연구개발이 가능할 것으로 예상된다.

  • PDF

Structural countermeasure for wind-induced vibration of suspension bridge catwalks (현수교 캣워크의 구조적 진동억제 대책)

  • Lee, Han-Kyu;Lee, Seung-Ho;Kwon, Soon-Duck;Kim, Jong-Hwa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.84-87
    • /
    • 2011
  • 본 연구에서는 버페팅 해석을 통해 현수교 캣워크에 작용하는 풍하중에 대한 정적 및 동적 응답을 알아 보고 진동 억제 대책을 제시하였다. 캣워크는 영구구조물이 아닌 임시구조물이기 때문에 그동안 절적한 평가가 수행되지 못하였다. 따라서 본 연구는 풍하중에 의한 캣워크의 동적 응답을 해석적인 방법을 통해 알아보았으며, 동적 변위를 산정하기 위해 시간이력 해석 방법을 통해 버페팅 해석을 수행하였다. 그 결과로 부터 캣워크의 수평변위를 억제하기 위해 주케이블을 시공중에 연결하는 방법과 스테이 로프를 설치하는 방법을 제시하였다.

  • PDF