• Title/Summary/Keyword: 시계열 영상

Search Result 265, Processing Time 0.021 seconds

Effect of Red-edge Band to Estimate Leaf Area Index in Close Canopy Forest (울폐산림의 엽면적지수 추정을 위한 적색경계 밴드의 효과)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.571-585
    • /
    • 2017
  • The number of spaceborne optical sensors including red-edge band has been increasing since red-edge band is known to be effective to enhance the information content on biophysical characteristics of vegetation. Considering that the Agriculture and Forestry Satellite is planning to carry an imaging sensor having red-edge band, we tried to analyze the current status and potential of red-edge band. As a case study, we analyzed the effect of using red-edge band and tried to find the optimum band width and wavelength region of the red-edge band to estimate leaf area index (LAI) of very dense tree canopy. Field spectral measurements were conducted from April to October over two tree species (white oak and pitch pine) having high LAI. Using the spectral measurement data, total 355 red-edge bands reflectance were simulated by varying five band width (10 nm, 20 nm, 30 nm, 40 nm, 50 nm) and 71 central wavelength. Two red-edge based spectral indices(NDRE, CIRE) were derived using the simulated red-edge band and compared with the LAI of two tree species. Both NDRE and CIRE showed higher correlation coefficients with the LAI than NDVI. This would be an alternative to overcome the limitation of the NDVI saturation problem that NDVI has not been effective to estimate LAI over very dense canopy situation. There was no significant difference among five band widths of red-edge band in relation to LAI. The highest correlation coefficients were obtained at the red-edge band of center wavelength near the 720 nm for the white oak and 710 nm for the pitch pine. To select the optimum band width and wavelength region of the red-edge band, further studies are necessary to examine the relationship with other biophysical variables, such as chlorophyll, nitrogen, water content, and biomass.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.

Detection of Pine Wilt Disease tree Using High Resolution Aerial Photographs - A Case Study of Kangwon National University Research Forest - (시계열 고해상도 항공영상을 이용한 소나무재선충병 감염목 탐지 - 강원대학교 학술림 일원을 대상으로 -)

  • PARK, Jeong-Mook;CHOI, In-Gyu;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.36-49
    • /
    • 2019
  • The objectives of this study were to extract "Field Survey Based Infection Tree of Pine Wilt Disease(FSB_ITPWD)" and "Object Classification Based Infection Tree of Pine Wilt Disease(OCB_ITPWD)" from the Research Forest at Kangwon National University, and evaluate the spatial distribution characteristics and occurrence intensity of wood infested by pine wood nematode. It was found that the OCB optimum weights (OCB) were 11 for Scale, 0.1 for Shape, 0.9 for Color, 0.9 for Compactness, and 0.1 for Smoothness. The overall classification accuracy was approximately 94%, and the Kappa coefficient was 0.85, which was very high. OCB_ITPWD area is approximately 2.4ha, which is approximately 0.05% of the total area. When the stand structure, distribution characteristics, and topographic and geographic factors of OCB_ITPWD and those of FSB_ITPWD were compared, age class IV was the most abundant age class in FSB_ITPWD (approximately 55%) and OCB_ITPWD (approximately 44%) - the latter was 11% lower than the former. The diameter at breast heigh (DBH at 1.2m from the ground) results showed that (below 14cm) and (below 28cm) DBH trees were the majority (approximately 93%) in OCB_ITPWD, while medium and (more then 30cm) DBH trees were the majority (approximately 87%) in FSB_ITPWD, indicating different DBH distribution. On the other hand, the elevation distribution rate of OCB_ITPWD was mostly between 401 and 500m (approximately 30%), while that of FSB_ITPWD was mostly between 301 and 400m (approximately 45%). Additionally, the accessibility from the forest road was the highest at "100m or less" for both OCB_ITPWD (24%) and FSB_ITPWD (31%), indicating that more trees were infected when a stand was closer to a forest road with higher accessibility. OCB_ITPWD hotspots were 31 and 32 compartments, and it was highly distributed in areas with a higher age class and a higher DBH class.

Analysis of Optimal Locations for Resource-Development Plants in the Arctic Permafrost Considering Surface Displacement: A Case Study of Oil Sands Plants in the Athabasca Region, Canada (지표변위를 고려한 북극 동토 지역의 자원개발 플랜트 건설 최적 입지 분석: 캐나다 Athabasca 지역의 오일샌드 플랜트 사례 연구)

  • Taewook Kim;YoungSeok Kim;Sewon Kim;Hyangsun Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.275-291
    • /
    • 2023
  • Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.