As the Internet technology advances, data on the web is increasing sharply. Many research study about incremental learning for classifying effectively in data increasing. Web document contains the time-series data such as published date. If we reflect time-series data to classification, it will be an effective classification. In this study, we analyze the time-series variation of the words. We propose an efficient classification through dividing the dataset based on the analysis of time-series information. For experiment, we corrected 1 million online news articles including time-series information. We divide the dataset and classify the dataset using SVM and $Na{\ddot{i}}ve$ Bayes. In each model, we show that classification performance is increasing. Through this study, we showed that reflecting time-series information can improve the classification performance.
Until recently, we use only weekly and monthly adjustment factors in order to estimate the AADT. By the way. we can suppose that the traffic is time series data related to flow of time. So we tried to analyse traffic patterns using time series analysis and apply them to estimate the AADT. We could divide traffic patterns into trend, cyclic variation, seasonal variation and irregular variation like as time series data. Also, in order to reduce random error components, we have looked for the weather conditions as an influential factor. There are many weather conditions such as rainfalls, but, temperatures, and sunshine hours among others but we selected rainfalls and lowest temperatures. And then, we have estimated the AADT using time series factors. To compare the results of, we have applied both irregular variation joined to weather factors and that not joined to. RMSE and U-test were opted at methods to appreciate results of AADT estimation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.3
/
pp.361-367
/
2010
We produced continuous vertical time series of 14 permanent GPS stations operated by National Geographic Information Institute by processing about five years of data. Then we computed the height velocities by using a linear regression fitting of those time series, and did principal component analysis to understand the overall characteristics of the series. The prominent signal obtained as the first mode of PCA results showed an average of 4.2 mm/yr vertical velocity. The values of the first mode eigenvectors were consistent at all sites. Thus, we concluded that all the 14 stations are uplifting nearly at the same velocity for the test period. Then changes of precision before and after removing the first mode signal from the 14 height time series were analyzed. As a result, the precision improved 34.8% on average.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.268-272
/
2012
현재 확률강우량을 산정할 때는 수문사상 자료계열이 정상성을 가지고 있다고 가정하고 산정하고 있다. 이는 경향성 검정을 통과하지 못한 비정상성을 가지는 자료계열이라 할지라도 이들 자료에 대해 해석을 할 수 있는 검증된 대안이 아직 없기 때문이다. 따라서 본 연구에서는 강우의 증가경향성이 존재하여 경향성 검정을 통과하지 못한 비정상성을 가지는 지역에 대해서 경향성을 고려한 확률강우량을 산정하고, 기존의 방법에 의해서 산정된 확률강우량과 비교해보았다. 그리고 현재까지의 강우량 자료를 시계열분석을 이용하여 미래 강우량 자료를 예측하고 확률강우량을 산정함으로써 시계열분석을 통한 확률강우량 산정과 경향성을 고려하여 산정된 확률강우량을 비교했다. 우선 실제로 우리나라의 강우의 패턴이 변화하고 있는지 확인하고, 변화의 양상이 뚜렷한 지점에 대해서 시계열분석을 이용하여 가까운 미래의 확률강우량을 산정하였다. 그 결과, 2010년에 비해서 2020년의 확률강우량이 4~15%정도 증가하였다. 다른 방법과 비교해본 결과, 약 5%의 편차를 보였다. 본 연구에서는 최종적으로 우리나라 강우관측소 61지점의 경향성을 판별하여 전국 지도에 등고선으로 나타내어 경향성을 고려해야 할 지역들은 분류하였고, 이 지도를 활용하여 확률강우량을 산정함으로써 수공구조물의 계획 및 설계, 하천관리, 수자원 계획 등에 활용하고 전체적인 설계 빈도 상향조정으로 발생되는 예산 낭비 방지와 홍수피해 저감에 도움이 되고자 한다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2010.06a
/
pp.28-31
/
2010
본 연구는 대구시의 상업지역의 용도지역변화를 GIS를 사용하여 시대별로 구축하고 이를 분석함으로써 변화의 특성을 고찰함에 그 목적이 있다. 연구의 방법은 도심기능의 분산과 그에 따른 상업지역을 중심으로 한 용도지역의 변화형태 그리고 상업시설의 입지형태를 분석하였다. 이에 따라 분석한 결과 상업지역의 입지에 따른 주변지역의 용도 지역의 변화와 아울러 가로축의 발달과 함께 상업시설의 형태도 선형으로 발달하며 기능을 분산시키는 것을 알 수 있었다.
According to recent technical advances on sensors and mobile devices, processing of data streams generated by the devices is becoming an important research issue. The data stream of real values obtained at continuous time points is called streaming time-series. Due to the unique features of streaming time-series that are different from those of traditional time-series, similarity matching problem on the streaming time-series should be solved in a new way. In this paper, we propose an efficient algorithm for streaming time- series matching problem that supports normalization transform. While the existing algorithms compare streaming time-series without any transform, the algorithm proposed in the paper compares them after they are normalization-transformed. The normalization transform is useful for finding time-series that have similar fluctuation trends even though they consist of distant element values. The major contributions of this paper are as follows. (1) By using a theorem presented in the context of subsequence matching that supports normalization transform[4], we propose a simple algorithm for solving the problem. (2) For improving search performance, we extend the simple algorithm to use $k\;({\geq}\;1)$ indexes. (3) For a given k, for achieving optimal search performance of the extended algorithm, we present an approximation method for choosing k window sizes to construct k indexes. (4) Based on the notion of continuity[8] on streaming time-series, we further extend our algorithm so that it can simultaneously obtain the search results for $m\;({\geq}\;1)$ time points from present $t_0$ to a time point $(t_0+m-1)$ in the near future by retrieving the index only once. (5) Through a series of experiments, we compare search performances of the algorithms proposed in this paper, and show their performance trends according to k and m values. To the best of our knowledge, since there has been no algorithm that solves the same problem presented in this paper, we compare search performances of our algorithms with the sequential scan algorithm. The experiment result showed that our algorithms outperformed the sequential scan algorithm by up to 13.2 times. The performances of our algorithms should be more improved, as k is increased.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.371-374
/
2003
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이다. 본 논문에서는 기존에 제안된 서브시퀀스 매칭 기법인 FRM과 Dual-Match를 대상으로 다양한 실험을 통하여 윈도우 크기 효과를 정량적으로 분석한다. 또한, 이러한 분석 결과를 기반으로 서브시퀀스 매칭 처리의 성능 개선을 위한 향후의 연구 방향을 제시한다.
Kim, Sihyeon;Seong, Byeongchan;Choi, Young-Geun;Yeo, In-kwon
The Korean Journal of Applied Statistics
/
v.35
no.4
/
pp.553-568
/
2022
The Household Income and Expenditure Survey is a representative survey of Statistics Korea, which aims to measure and analyze national income and consumption levels and their changes by understanding the current state of household balances. Recently, the disconnection problem in these time series caused by the large-scale reorganization of the survey methods in 2017 and 2019 has become an issue. In this study, we model the characteristics of the time series in the Household Income and Expenditure Survey up to 2016, and use the modeling to compute forecasts for linking the expenditures in 2017 and 2018. In order to evenly reflect the characteristics across all expenditure item series and to reduce the impact of a specific forecast model, we synthesize a total of 8 models such as regression models, time series models, and machine learning techniques. In particular, the noteworthy aspect of this study is that it improves the forecast by using the optimal combination technique that can exactly reflect the hierarchical structure of the Household Income and Expenditure Survey without loss of information as in the top-down or bottom-up methods. As a result of applying the proposed method to forecast expenditure series from 2017 to 2019, it contributed to the recovery of time series linkage and improved the forecast. In addition, it was confirmed that the hierarchical time series forecasts by the optimal combination method make linkage results closer to the actual survey series.
Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.
Proceedings of the Korean Statistical Society Conference
/
2005.11a
/
pp.25-30
/
2005
경제정책과 관련하여 경제시계열을 작성하는 중요한 목적중 하나는 순환변동을 파악할 수 있는 정보를 제공하는 것이다. 그런데 월별 또는 분기별로 작성되는 경제시계열은 계절변동 및 불규칙변동으로 인해 순환변동 등 기조적 변화를 잘못 파악하기 쉽다. 경제시계열의 기조적 변화를 파악하기 위해서는 원래의 경제시계열에서 계절변동, 불규칙변동을 분해 후 제거해서 분석해야 한다. 이 논문에서는 웨이블렛(wavelet)을 이용하여 시계열을 분해하고 이를 통해 경제시계열의 순환변동 등을 구하고 분해 요소들을 따로 예측한 후 결합된 예측을 시도한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.