Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.328-328
/
2022
GCM은 기후 변수들의 미래 예측을 위해 사용되는 모형이지만, 공간에 대해 저해상도 형태로 결과가 제공되며, 공간적으로 변화하는 국지적 규모의 기후변수(즉, 강수)를 이해하기 위해서는 공간변동성을 고려할 필요가 있다. 강우의 예측은 강우의 생성과 소멸 과정을 추계학적으로 재현하는 일기생성 모형인 AWE-GEN을 이용하여 앙상블 시계열을 생성하고, 구름의 생성과 소멸 및 이동, wet/dry 셀들의 생성과 이동, 지형의 국지적 특성 등을 반영한 시공간 변동 앙상블 시계열은 AWE-GEN-2D 모형을 이용하여 생성하였으며, 국토의 대부분이 산악지형으로 구성된 국내에 적용하여 그 적용성을 검토하였다. 생성된 시공간 격자 기반의 일기생성 시계열은 PRISM을 사용하여 매핑된 강수량의 공간 분포와 비교, 검증하였으며, 측정되지 않은 관측소 또는 원격 지역에 대한 평균 및 극한 강수량의 미래 예측 추정에 사용되었다. 또한, 평균 및 극한 강우의 공간 분포에 대한 미래 변화는 다양한 기간, 이산화탄소 배출 시나리오 등의 영향에서도 고려된다. 본 연구의 결과는 수자원 관리 및 재난 관리 정책을 수립하고 서비스를 제공하기 위한 기본 자료로 사용될 수 있다.
This paper considers the statistical characteristics on the air quality (PM10) of Korea collected hourly in 2011. PM10 in Korea exhibits very strong correlations even for higher lags, namely, long range dependence. It is power-law tailed in marginal distribution, and generalized Pareto distribution successfully captures the thicker tail than log-normal distribution. However, slowly decaying autocorrelations may confuse practitioners since a non-stationary model (such as changes in mean) can produce spurious long term correlations for finite samples. We conduct a statistical testing procedure to distinguish two models and argue that the high persistency can be explained by non-stationary changes in mean model rather than long range dependent time series models.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.6
/
pp.137-143
/
2010
A method for improving prediction accuracy through processing time series data has been studied in this research. We have designed techniques to model multiple similar time series data and avoided the shortcomings of single prediction model. We predicted the future changes by effective rules derived from these models. The methods for testing prediction accuracy consists of three types: fixed interval, sliding, and cumulative method. Among the three, cumulative method produced the highest accuracy.
A recurrence plot can be used as a graphical exploratory data analysis tool before confirmatory time series analysis. With the recurrence plot, we can obtain the structural pattern of the time series and recognize the structural change points in a time series at a glance. Korean stock data shows the usefulness of the recurrence plot as a graphical exploratory data analysis tool for time series data.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.152-154
/
2000
본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환은 시계열 데이터간의 절대적인 유클리드 거리에 관계없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 본 논문에서는 이와 같이 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용한 탐색 기법을 인덱스 보간법이라 부른다. 질의 시퀀스의 길이 256~512 중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과를 선택률이 10-5일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 14.6배 개선되었다.
이 논문의 목적은 시계열 예측 엔진의 개발과 그 엔진을 Application S/W로 구현하는 것이다 시계열 예측 엔진은 과거의 데이터를 분석하여 예측을 위한 식의 차수와 형태를 결정하고 이를 바탕으로 파라미터를 결정한 후 미래의 간을 예측하는 3가지 단계를 거친다. 석기에 쓰이는 기법들은 여러 가지가 있는데 본 논문에서는 ARMA(Auto Regressive Moving Average)를 기본으로 분석하였다 Application S/W는. 개발된 예측 엔진에서 분석될 과거 데이터를 입력받아 예측 엔진 구동에 사용되고 그 결과를 그래프로 나타내는 일련의 과정을 거친다. Application S/W 개발의 많은 Programming Language가 존재하지만 본 논문에서는 Visual C누 +을 사용하였다. 또한 이 논문에선, 특정 교차로를 통과하는 교통량 변화에 대한 데이터를 이용하여 예측을 수행하고. 그 결과를 Application S/W에 적용시켰다.
Kim, Tae-Gyun;Jeon, Yeong-U;Lee, Chang-Hui;Kim, Gi-Seon
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2019.05a
/
pp.76-76
/
2019
도선사는 항만선박운항 안전과 효율적인 항만운영을 위해 유지되어야 하는 중요한 인적요소이다. 그러나 최근 개정된 도선법에 따른 예상되는 도선사 시험응시연령의 저하와 국가필수도선사제도 도입으로 인한 정년연장 현상 등의 직접적인 환경변화가 이루어지고 있다. 또한 계속되는 해운 및 항만환경의 변화인 선박의 대형화와 항만물동량 변화 등은 우리나라 도선사 수요에 직간접적이니 영향으로 작용하고 있다. 따라서 본 연구에서는 이러한 도선환경 변화에 따른 우리나라 도선사 수요의 산정과 각 도선구별 적정 도선사의 분배방안을 제시 하고자 한다. 우선 문헌조사 및 선행연구의 분석을 통하여, 1996년 이후 우리나라 해양수산부에서 시행해오고 있는 수급계획 수립과 이에 따른 도선사 수 지정방식에서 도선운영협의제도로 변환한 과정과 문제점 등을 도출하고자 한다. 그리고 선행연구에서 도입해 수요예측 산정방식의 장단점과 문제점을 분석하여, 수요예측 개선방안을 도출하였다. 마지막으로 기존 수요예측 방식의 개선방안으로 시계열 자료를 이용한 시계열분석법을 도입하여, 향후 5년간의 적정 도선사 수요를 예측하였다.
This paper proposes the so-called MOSUM-based sparse projection method for change points detection in high-dimensional time series. Our method is inspired by Wang and Samworth (2018), however, our method improves their method in two ways. One is to find change points all at once, so it minimizes sequential error. The other is localized so that more robust to the mean changes offsetting each other. We also propose data-driven threshold selection using block wild bootstrap. A comprehensive simulation study shows that our method performs reasonably well in finite samples. We also illustrate our method to stock prices consisting of S&P 500 index, and found four change points in recent 6 years.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.462-462
/
2015
이 논문에서는 시 공간적 토양수분 변화를 파악하기 위해 다년간 축적된 실측 토양수분 데이터를 이용하여 단변량 시계열 분석을 하였다. 지형에 따른 토양수분 변화를 알아보기 위해 경기도 파주에 위치한 설마천 유역의 산지사면 중 한 단면을 선정하였으며, 깊이에 따른 변동성은 깊이 10cm와 30cm에서 측정한 토양수분 데이터를 이용하여 분석하였다. 또한, 연도별 토양수분의 변화를 파악하고 토양수분을 예측하기 위해 2010-2013년의 토양수분 데이터를 일단위로 단변량 모델링을 시도하였다. 그 결과, 연도별 변화에 따른 경향성은 보이지 않았으며 대부분의 지점에서 ARMA(1, 1) 또는 ARMA(1, 0) 모형으로 모의되었다. 2시간 간격의 1-2개월 단기간 토양수분 데이터를 모의한 선행연구와 달리 본 연구에서는 낮은 차수의 모형을 보였다. 지형적 토양수분 거동을 살펴보면 상부사면에 위치하고 있는 지점에서는 모두 ARMA(1, 1)로 표현되지만 하부사면에 위치한 지점들은 연도나 심도에 따라 ARMA(1, 0)으로 모의된다. 단변량 모형의 정확도를 알아보기 위해 R2와 RMSE를 비교하였다. 10cm 깊이에서는 경향성을 보이지 않으나, 30cm 깊이에서는 사면하부로 갈수록 R2는 작아지고 RMSE는 커져, 하부사면에서의 모델링이 상부사면에 비해 정확도가 낮음을 보였다. 또한 2012년 토양수분 자료를 이용하여 2013년 토양수분을 예측하기 위해 2012년 매개변수와 2013년 전일 데이터를 이용하여 예측하고자 하는 일단위 토양수분을 구하였다. 그 결과 $R^2=0.646-0.807$, RMSE=1.758-4.802의 정확도를 나타냈다.
Journal of the Korea Society of Computer and Information
/
v.16
no.2
/
pp.225-233
/
2011
Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.