• Title/Summary/Keyword: 시계열 변화

Search Result 1,018, Processing Time 0.037 seconds

High resolution mapping of future forcasts for precipitation using AWE-GEN-2D over South Korea (AWE-GEN-2D를 이용한 국내 미래 강우의 고해상도 예측)

  • Doi, Manh Van;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.328-328
    • /
    • 2022
  • GCM은 기후 변수들의 미래 예측을 위해 사용되는 모형이지만, 공간에 대해 저해상도 형태로 결과가 제공되며, 공간적으로 변화하는 국지적 규모의 기후변수(즉, 강수)를 이해하기 위해서는 공간변동성을 고려할 필요가 있다. 강우의 예측은 강우의 생성과 소멸 과정을 추계학적으로 재현하는 일기생성 모형인 AWE-GEN을 이용하여 앙상블 시계열을 생성하고, 구름의 생성과 소멸 및 이동, wet/dry 셀들의 생성과 이동, 지형의 국지적 특성 등을 반영한 시공간 변동 앙상블 시계열은 AWE-GEN-2D 모형을 이용하여 생성하였으며, 국토의 대부분이 산악지형으로 구성된 국내에 적용하여 그 적용성을 검토하였다. 생성된 시공간 격자 기반의 일기생성 시계열은 PRISM을 사용하여 매핑된 강수량의 공간 분포와 비교, 검증하였으며, 측정되지 않은 관측소 또는 원격 지역에 대한 평균 및 극한 강수량의 미래 예측 추정에 사용되었다. 또한, 평균 및 극한 강우의 공간 분포에 대한 미래 변화는 다양한 기간, 이산화탄소 배출 시나리오 등의 영향에서도 고려된다. 본 연구의 결과는 수자원 관리 및 재난 관리 정책을 수립하고 서비스를 제공하기 위한 기본 자료로 사용될 수 있다.

  • PDF

Time Series Modelling of Air Quality in Korea: Long Range Dependence or Changes in Mean? (한국의 미세먼지 시계열 분석: 장기종속 시계열 혹은 비정상 평균변화모형?)

  • Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.987-998
    • /
    • 2013
  • This paper considers the statistical characteristics on the air quality (PM10) of Korea collected hourly in 2011. PM10 in Korea exhibits very strong correlations even for higher lags, namely, long range dependence. It is power-law tailed in marginal distribution, and generalized Pareto distribution successfully captures the thicker tail than log-normal distribution. However, slowly decaying autocorrelations may confuse practitioners since a non-stationary model (such as changes in mean) can produce spurious long term correlations for finite samples. We conduct a statistical testing procedure to distinguish two models and argue that the high persistency can be explained by non-stationary changes in mean model rather than long range dependent time series models.

A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series (다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구)

  • Cho, Young-Hee;Lee, Gye-Sung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • A method for improving prediction accuracy through processing time series data has been studied in this research. We have designed techniques to model multiple similar time series data and avoided the shortcomings of single prediction model. We predicted the future changes by effective rules derived from these models. The methods for testing prediction accuracy consists of three types: fixed interval, sliding, and cumulative method. Among the three, cumulative method produced the highest accuracy.

Exploratory Data Analysis for Korean Stock Data with Recurrence Plots (재현그림을 통한 우리나라 주식 자료에 대한 탐색적 자료분석)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.807-819
    • /
    • 2013
  • A recurrence plot can be used as a graphical exploratory data analysis tool before confirmatory time series analysis. With the recurrence plot, we can obtain the structural pattern of the time series and recognize the structural change points in a time series at a glance. Korean stock data shows the usefulness of the recurrence plot as a graphical exploratory data analysis tool for time series data.

An Index-Based Subsequence Matching Algorithm Supporting Normalization Transform in Time-Series Databases (시계열 데이타베이스의 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • 노웅기;감상욱;황규영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.152-154
    • /
    • 2000
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환은 시계열 데이터간의 절대적인 유클리드 거리에 관계없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 본 논문에서는 이와 같이 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용한 탐색 기법을 인덱스 보간법이라 부른다. 질의 시퀀스의 길이 256~512 중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과를 선택률이 10-5일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 14.6배 개선되었다.

  • PDF

Study on the Development of a Time-Series Prediction Application Software (시계열 예측 Application S/W 개발에 관한 연구)

  • Kim, Chi-Ho;Hong, Tae-Hwa;Kim, Hag-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2983-2985
    • /
    • 2000
  • 이 논문의 목적은 시계열 예측 엔진의 개발과 그 엔진을 Application S/W로 구현하는 것이다 시계열 예측 엔진은 과거의 데이터를 분석하여 예측을 위한 식의 차수와 형태를 결정하고 이를 바탕으로 파라미터를 결정한 후 미래의 간을 예측하는 3가지 단계를 거친다. 석기에 쓰이는 기법들은 여러 가지가 있는데 본 논문에서는 ARMA(Auto Regressive Moving Average)를 기본으로 분석하였다 Application S/W는. 개발된 예측 엔진에서 분석될 과거 데이터를 입력받아 예측 엔진 구동에 사용되고 그 결과를 그래프로 나타내는 일련의 과정을 거친다. Application S/W 개발의 많은 Programming Language가 존재하지만 본 논문에서는 Visual C누 +을 사용하였다. 또한 이 논문에선, 특정 교차로를 통과하는 교통량 변화에 대한 데이터를 이용하여 예측을 수행하고. 그 결과를 Application S/W에 적용시켰다.

  • PDF

도선환경 변화에 따른 도선수요 산정방안에 관한 연구

  • Kim, Tae-Gyun;Jeon, Yeong-U;Lee, Chang-Hui;Kim, Gi-Seon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.76-76
    • /
    • 2019
  • 도선사는 항만선박운항 안전과 효율적인 항만운영을 위해 유지되어야 하는 중요한 인적요소이다. 그러나 최근 개정된 도선법에 따른 예상되는 도선사 시험응시연령의 저하와 국가필수도선사제도 도입으로 인한 정년연장 현상 등의 직접적인 환경변화가 이루어지고 있다. 또한 계속되는 해운 및 항만환경의 변화인 선박의 대형화와 항만물동량 변화 등은 우리나라 도선사 수요에 직간접적이니 영향으로 작용하고 있다. 따라서 본 연구에서는 이러한 도선환경 변화에 따른 우리나라 도선사 수요의 산정과 각 도선구별 적정 도선사의 분배방안을 제시 하고자 한다. 우선 문헌조사 및 선행연구의 분석을 통하여, 1996년 이후 우리나라 해양수산부에서 시행해오고 있는 수급계획 수립과 이에 따른 도선사 수 지정방식에서 도선운영협의제도로 변환한 과정과 문제점 등을 도출하고자 한다. 그리고 선행연구에서 도입해 수요예측 산정방식의 장단점과 문제점을 분석하여, 수요예측 개선방안을 도출하였다. 마지막으로 기존 수요예측 방식의 개선방안으로 시계열 자료를 이용한 시계열분석법을 도입하여, 향후 5년간의 적정 도선사 수요를 예측하였다.

  • PDF

High-dimensional change point detection using MOSUM-based sparse projection (MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정)

  • Kim, Moonjung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • This paper proposes the so-called MOSUM-based sparse projection method for change points detection in high-dimensional time series. Our method is inspired by Wang and Samworth (2018), however, our method improves their method in two ways. One is to find change points all at once, so it minimizes sequential error. The other is localized so that more robust to the mean changes offsetting each other. We also propose data-driven threshold selection using block wild bootstrap. A comprehensive simulation study shows that our method performs reasonably well in finite samples. We also illustrate our method to stock prices consisting of S&P 500 index, and found four change points in recent 6 years.

Soil Moisture Time Series Modeling for Daily Measured at a Steep Relief Measured in a Mountainous Hillside (산지사면에서 측정된 일단위 토양수분 시계열 자료의 모델링)

  • Jeong, Ju Yeon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.462-462
    • /
    • 2015
  • 이 논문에서는 시 공간적 토양수분 변화를 파악하기 위해 다년간 축적된 실측 토양수분 데이터를 이용하여 단변량 시계열 분석을 하였다. 지형에 따른 토양수분 변화를 알아보기 위해 경기도 파주에 위치한 설마천 유역의 산지사면 중 한 단면을 선정하였으며, 깊이에 따른 변동성은 깊이 10cm와 30cm에서 측정한 토양수분 데이터를 이용하여 분석하였다. 또한, 연도별 토양수분의 변화를 파악하고 토양수분을 예측하기 위해 2010-2013년의 토양수분 데이터를 일단위로 단변량 모델링을 시도하였다. 그 결과, 연도별 변화에 따른 경향성은 보이지 않았으며 대부분의 지점에서 ARMA(1, 1) 또는 ARMA(1, 0) 모형으로 모의되었다. 2시간 간격의 1-2개월 단기간 토양수분 데이터를 모의한 선행연구와 달리 본 연구에서는 낮은 차수의 모형을 보였다. 지형적 토양수분 거동을 살펴보면 상부사면에 위치하고 있는 지점에서는 모두 ARMA(1, 1)로 표현되지만 하부사면에 위치한 지점들은 연도나 심도에 따라 ARMA(1, 0)으로 모의된다. 단변량 모형의 정확도를 알아보기 위해 R2와 RMSE를 비교하였다. 10cm 깊이에서는 경향성을 보이지 않으나, 30cm 깊이에서는 사면하부로 갈수록 R2는 작아지고 RMSE는 커져, 하부사면에서의 모델링이 상부사면에 비해 정확도가 낮음을 보였다. 또한 2012년 토양수분 자료를 이용하여 2013년 토양수분을 예측하기 위해 2012년 매개변수와 2013년 전일 데이터를 이용하여 예측하고자 하는 일단위 토양수분을 구하였다. 그 결과 $R^2=0.646-0.807$, RMSE=1.758-4.802의 정확도를 나타냈다.

  • PDF

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.