• 제목/요약/키워드: 시계열 변화

검색결과 1,018건 처리시간 0.031초

시계열 분석을 이용한 낙찰 예정가 생성 방법들의 비교 (Comparison of Generating Reserve Prices Methods Using Time Series Analysis)

  • 고민정;이용규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.439-442
    • /
    • 2004
  • 최근에 인터넷 경매가 보편화되면서 경매 물품의 가격 결정을 관한 연구가 증가하고 있다. 그러나 이것들은 경매 물품 대한 최근의 추세와 시간에 따른 주기변화를 반영하지 못하여 잘못된 낙찰 예정가를 생성하는 경우가 많다. 본 논문에서는 이러한 문제점들을 해결하고자 수요 예측에서 사용하는 시계열 분석을 이용하여 경매기록 데이터베이스로부터 경매 물품에 맞는 낙찰 예정가를 자동으로 생성하는 방법을 제안한다. 또한 성능 분석을 통하여 시계열 분석 방법에 의한 낙찰 예정가 생성방법의 특징을 비교하고 분석한다. 여기서 제안된 방법이 경매 물품의 실제 낙찰가와 차이를 줄여 낙찰률을 높이고, 경매 물품이 지나치게 낮은 가격으로 낙찰 되는 경우를 줄일 수 있음을 연구한다.

  • PDF

혈중 알코올 농도에 따라 반응하는 뇌활동도의 카오스분석 (Chaotic Analysis of Brain Activity with Varying Blood-Alcohol Level)

  • 오영직;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3238-3240
    • /
    • 2000
  • 본 논문의 목적은 음주섭취로 인한 혈중 알코올 농도에 따른 뇌의 활동도변화를 측정, 분석하는데 있다. 1차원 시계열데이터인 EEG신호는 생체 비선형 동역학 시스템으로부터 발생하는 Deterministic Nonlinear Chaos신호로써 무작위적인 신호와는 구분되어질 수 있다. EEG시계열데이터를 위상공간에 적절한 어트랙터로 재구성하여 상관차원 최대발산지수 등의 카오스 지수들을 추출하여보면 EEG시계열데이터가 무작위적인 계에서 발생하는 랜덤한 신호가 아닌 카오스계에서 기인함을 알 수 있고, 인간의 정신상태에 따른 뇌의 활동도를 정성적, 정량적으로 판별해 볼 수 있다. 이러한 카오스 분석방법을 토대로 음주전의 뇌의 활동도와 음주후 혈중알코올 농도에 따른 뇌의 활동도변화를 EEG의 카오스 지수들의 변화를 통해 분석해 보았다.

  • PDF

추계학적 시강우모의 기법을 이용한 극한강우 발생 및 시간단위 설계강우량 산정기법에 대한 평가

  • 이정기;김병식;전병희;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.344-344
    • /
    • 2012
  • 추계학적 강우모의발생기법은 수문학적 분석에 널리 이용되는 방법으로서 장기간의 강우입력 자료를 이용할 수 없는 경우 과거의 관측 자료를 반복하여 이용하기 보다는 과거 관측치의 통계학적 특성을 지니고 있는 합성강우량 시계열자료를 모의하여 설계 강우량 산정 및 강우-유출모형을 이용한 장기해석 등과 같은 수문학적 해석을 위한 입력 자료를 확충하기 위해 이용된다. 그러나 최근 기후변화로 인해 수문학적 설계 강우량 산정 시 가장 중요한 강우발생 특성과 극한치의 특성이 변화하고 있기 때문에 전통적인 추계학적 강우발생기법을 이용하여 강우 시계열자료를 확충하는 것은 한계가 있을 것으로 추정되고 있다. 이에 본 논문에서는 최근 유럽 등에서 도시배수체계의 설계를 위해 널리 이용되고 있는 Bartlett-Lewis rectangular pulse 모형을 이용하여 시간단위 강수량자료를 확충하고 모의된 강우량시계열자료와 실측 강우량자료를 통계학적으로 비교하였다. 또한, 극한치 분석을 통해 변화하는 기후상황에서 적합한지를 평가하였다.

  • PDF

기후변화 영향을 고려한 포아송 클러스터 가상강우생성모형 개발 및 검증 (Development of Poisson cluster generation model considering the climate change effects)

  • 박현진;한재문;김종호;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.189-189
    • /
    • 2015
  • 본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.

  • PDF

시계열 데이터베이스에서 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘 (An Index Interpolation-based Subsequence Matching Algorithm supporting Normalization Transform in Time-Series Databases)

  • 노웅기;김상욱;황규영
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권2호
    • /
    • pp.217-232
    • /
    • 2001
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환을 시계열 데이터 간의 절대적인 유클리드 거리에 관계 없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 기존의 서브시퀀스 매칭 알고리즘을 확장 없이 정규화 변환 서브시퀀스 매칭에 단순히 응용할 경우, 질의 결과로 반환되어야 할 서부시퀀스를 모두 찾아내지 못하는 착오 기각이 발생한다. 또한, 정규화 변환을 지원하는 기존의 전체 매칭 알고리즘의 경우, 모든 가능한 질의 시퀀스 길이 각각에 대하여 하나씩의 인덱스를 생성하여야 하므로, 저장 공간 및 데이터 시퀀스 삽입/삭제의 부담이 매우 심각하다. 본 논문에서는 인덱스 보간법을 이용하여 문제를 해결한다. 인덱스 보간법은 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용하며, 인덱스가 필요한 모든 경우에 대한 탐색을 수행하는 기법이다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 제안된 알고리즘은 질의 시에 주어진 질의 시퀀스의 길이에 따라 생성되어 있는 인덱스 중에서 가장 적절한 것을 선택하여 탐색을 수행한다. 이때, 생성되어 있는 인덱스의 개수가 많을수록 탐색 성능이 향상된다. 필요에 따라 인덱스의 개수를 변화함으로써 탐색 성능과 저장 공간 간의 비율을 유연하게 조정할 수 있다. 질의 시퀀스의 길이 256 ~ 512중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과 선택률이 $10^{-2}$일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 2.40배, 선택률이 $10^{-5}$일 때 평균 14.6배 개선되었다. 제안된 알고리즘의 탐색 성능은 탐색 결과 선택률이 작아질수록 더욱 향상되므로, 실제 데이터베이스 응용에서의 효용성이 높다고 판단된다.

  • PDF

시계열 분석을 통한 시도별 고등학교 학생 수 예측 (An Analysis of the Estimated Number of High School Students between 2016 and 2020 by Time Series Analysis)

  • 임성범;박선형
    • 한국콘텐츠학회논문지
    • /
    • 제16권12호
    • /
    • pp.735-748
    • /
    • 2016
  • 현재는 저출산 고령화 사회현상에 따라 한국의 교육환경이 급변하는 시점이다. 특히, 고등교육 시장에서 상당한 변화가 예상되는데 통계청의 보고에 따르면 2010년에서 2020까지 10년 동안 고등학생 수는 196만명에서 127만명으로 35% 감소하는 것으로 나타났다. 학생 수의 변화는 교원 수급문제와 직 간접적으로 연계되며, 이는 적정한 교육재정 배정 및 예산 확보와 함께 다시 학급 당 학생 수, 교사 1인당 주당 수업시수 등 교육의 양적 질적 부문에 매우 중요하게 영향을 미치게 된다. 이러한 상황에서 교육시스템 운용에 중요한 영향요인이며 결정요인으로 기능할 것으로 예상되는 재학 학생 수에 대한 정확한 예측모형의 제시는 향후 국가의 교육행정체제와 인사관리 방향성을 결정하는데 있어서 그 가치가 매우 높다고 사료된다. 이 연구에서는 시계열 분석기법의 특성 상 축적된 과거 데이터가 충분한 11개 시도의 고등학생 수 사례를 대상으로 한다. 주어진 실측 데이터에 대한 모형적합도 검정과 오차추정을 위해 다양한 시계열 예측모형과 오차 추정방식을 적용 하였다.

Reference Map을 이용한 시계열 image data의 자동분류법 (Automatic Classification Method for Time-Series Image Data using Reference Map)

  • 홍선표
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.58-65
    • /
    • 1997
  • 본 논문에서는 시계열 image data를 안정되고 높은 정확도로 분류할 수 있는 자동분류법을 제안하였다. 제안한 방법은 대상 영역에 관한 분류도가 기존재하던 가, 아니면 최소한 시계열 image data 중 어느 한 image data가 분류되어 있다고 하는 전제조건에 그 기초를 두고 있다. 분류도는 training area를 선정하기 위라여 사용하는 기준주제도로 사용되어진다. 제안한 방법은 1)기준주제도를 사용한 training data의 추출, 2)taining data의 균질성에 의거한 변화화소의 검출, 3)검출된 변화화소에 대한 clustering, 4)training data의 재구성, 5)maximum likelihood classifier와 같은 판별법에 의한 분류 등 5개의 단계로 구성된다. 제안한 방법의 성능을 정량적으로 평가하기 위하여 4개의 시계열 Landsat TM image data를 제안한 방법과 숙련된 operator가 필요한 기존의 방법으로 각각 분류하여 비교 검토하였다. 그 결과, 기존의 방법으로는 숙련된 operator가 필요하고, 분류도를 얻기까지 수일이 소요되는 데 반하여, 제안한 방법으로는 숙련된 operator 없이, 신뢰성 있는 분류도를 수 시간 내에 자동으로 얻을 수 있었다.

  • PDF