• Title/Summary/Keyword: 시계열 데이터 예측

Search Result 539, Processing Time 0.029 seconds

Performance for simple combinations of univariate forecasting models (단변량 시계열 모형들의 단순 결합의 예측 성능)

  • Lee, Seonhong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • In this paper, we consider univariate time series models that are well known in the field of forecasting and we study on forecasting performance for their simple combinations. The univariate time series models include exponential smoothing methods and ARIMA (autoregressive integrated moving average) models, their extended models, and non-seasonal and seasonal random walk models, which is frequently used as benchmark models for forecasting. The median and mean are simply used for the combination method, and the data set used for performance evaluation is M3-competition data composed of 3,003 various time series data. As results of evaluating the performance by sMAPE (symmetric mean absolute percentage error) and MASE (mean absolute scaled error), we assure that the simple combinations of the univariate models perform very well in the M3-competition dataset.

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.

  • PDF

Chaotic Time Series Prediction using Parallel-Structure Fuzzy Systems (병렬구조 퍼지스스템을 이용한 카오스 시계열 데이터 예측)

  • 공성곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2000
  • This paper presents a parallel-structure fuzzy system(PSFS) for prediction of time series data. The PSFS consists of a multiple number of fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts the same future data independently based on its past time series data with different embedding dimension and time delay. The component fuzzy systems are characterized by multiple-input singleoutput( MIS0) Sugeno-type fuzzy rules modeled by clustering input-output product space data. The optimal embedding dimension for each component fuzzy system is chosen to have superior prediction performance for a given value of time delay. The PSFS determines the final prediction result by averaging the outputs of all the component fuzzy systems excluding the predicted data with the minimum and the maximum values in order to reduce error accumulation effect.

  • PDF

A Study on Forecasting Spare Parts Demand based on Data-Mining (데이터 마이닝 기반의 수리부속 수요예측 연구)

  • Kim, Jaedong;Lee, Hanjun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Demand forecasting is one of the most critical tasks in defense logistics, because the failure of the task can bring about a huge waste of budget. Up to date, ROK-MND(Republic of Korea - Ministry of National Defense) has analyzed past component consumption data with time-series techniques to predict each component's demand. However, the accuracy of the prediction still needs to be improved. In our study, we attempted to find consumption pattern using data mining techniques. We gathered an 18,476 component consumption data first, and then derived diverse features to utilize them in identification of demanding patterns in the consumption data. The results show that our approach improves demand forecasting with higher accuracy.

Data mining analysis for short-term water demand forecasting (물 수요예측을 위한 데이터 마이닝 기법 분석)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1771_1772
    • /
    • 2009
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.

  • PDF

Real-time Error Detection Based on Time Series Prediction for Embedded Sensors (임베디드 센서를 위한 시계열 예측 기반 실시간 오류 검출 기법)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.11-21
    • /
    • 2011
  • An embedded sensor is significantly influenced by its spatial environment, such as barriers or distance, through low power and signal strength. Due to these causes, noise data frequently occur in an embedded sensor. Because the information acquired from the embedded sensor exists in a time series, it is hard to detect an error which continuously takes place in the time series information on a realtime basis. In this paper, we proposes an error detection method based on time-series prediction that detects error signals of embedded sensors in real time in consideration of the physical characteristics of embedded devices. The error detection method based on time-series prediction proposed in this paper determines errors in generated embedded device signals using a stable distance function. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals.

A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining (데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구)

  • Park, Cheonkyu;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.234-241
    • /
    • 2021
  • By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.

The Performance Comparative Analysis System for Stock Price Forecasting on AI Environment (AI 기반환경의 주식 시세예측을 위한 성능 비교분석 시스템)

  • Lee, Cheol-Hyeon;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.127-128
    • /
    • 2022
  • 최근 많은 증권사 및 다양한 금융사기업에서 투자자의 주식투자를 돕는 투자자문 인공지능, 로보어드바이저를 제안하고 활용한다. 본 논문에서는 증권사 등에서 사용되고 있는 주식 시세예측 알고리즘의 성능을 상호 비교분석한다. 주식 시계열 데이터 예측에 용이한 4가지의 인공지능 알고리즘인 LSTM, GRU, 딥Q 네트워크강화학습, XGBoost 알고리즘의 성능을 분석하고 비교하는 시스템을 구현하였다. 본 연구에서는 구현된 성능 분석 시스템을 통해 어떤 알고리즘이 주식 시세를 예측하고 활용하기 위해 가장 좋은 성능을 가졌는지 비교분석하고 해당 시스템의 결과분석이 주식예측에 어떠한 영향을 주는지를 평가한다.

  • PDF

A Study on the Traffic Volume Correction and Prediction Using SARIMA Algorithm (SARIMA 알고리즘을 이용한 교통량 보정 및 예측)

  • Han, Dae-cheol;Lee, Dong Woo;Jung, Do-young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, a time series analysis technique was applied to calibrate and predict traffic data for various purposes, such as planning, design, maintenance, and research. Existing algorithms have limitations in application to data such as traffic data because they show strong periodicity and seasonality or irregular data. To overcome and supplement these limitations, we applied the SARIMA model, an analytical technique that combines the autocorrelation model, the Seasonal Auto Regressive(SAR), and the seasonal Moving Average(SMA). According to the analysis, traffic volume prediction using the SARIMA(4,1,3)(4,0,3) 12 model, which is the optimal parameter combination, showed excellent performance of 85% on average. In addition to traffic data, this study is considered to be of great value in that it can contribute significantly to traffic correction and forecast improvement in the event of missing traffic data, and is also applicable to a variety of time series data recently collected.

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.