• Title/Summary/Keyword: 시계열 데이터 예측

Search Result 539, Processing Time 0.035 seconds

Estimating Maintenance Cost of RAPCON at Air Force Base (비행기지 RAPCON 유지보수비용 추정)

  • Bang, Jang-Kyu;Lee, Gun-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.511-518
    • /
    • 2016
  • RAPCON non only controls landing/take-off procedures but also approaching air traffics within 60-70 NM range of air force base. This paper, first of all, tries to research the failure rate per operation hours, mean time between failure (MTBF) of RAPCON according to six blocks such as interrogator, receiver, power unit, display unit, data process unit and antenna. In addition, this paper estimates the maintenance cost over next 10 months based on 50 monthly maintenance cost data. Considering the maintenance cost data from RAPCON which has been used over designed service life span, it is no doubt the forecasted data proved the monthly cost would go up incrementally during the rest of economic life of the facility. Such research result is also proven to be the same with the result of bathtub curve data during operating life.

A Study of Exchange rate Prediction Model using Model-based (모델기반 방법론을 이용한 환율예측 모형 연구)

  • Jeon, Jin-Ho;Moon, Seok-Hwan;Lee, Chae-Rin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.547-549
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

  • PDF

Adaptive Short-Term Vehicle Speed Prediction Models (적응성 있는 단기간 속도 예측모형 개발에 관한 연구)

  • 조범철
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.265-274
    • /
    • 1998
  • 본 논문은 도로를 주행하는 차량의 지점속도에 대하여 단기간(short-term)으로 예측하는 네 가지의 모형들에 대한 개발 및 결과의 비교하고 평가했다. 사용된 기법들로는 다중회귀분석, 시계열분석(ARIMA), 인공 신경망, 칼만필터링 등이며, 모형의 구출을 위하여 다수의 독립변수 및 입력변수가 요구되는 다중회귀분석과 인공 신경망에서는 연속방정식에서 고려되는 변수들간의 단순상관계수 및 편상관계수의 계산을 통해서 입력변수가 설정이 되었으며, 시계열분석(ARIMA)과 칼만필터링 등 단일 입력 변수만을 요하는 모형에서는 바로 전 시간대와 현재시간대의간격동안 속도의 변화량을 입력변수로 설정하였다. 속도를 비롯해서 교통 데이터는 현장자료를 사용하였는데, 이는 서울의 한강 옆에 위치한 올림픽대로 중 한강대로에 위치한 검지기 3개를 통해서 천호동 방면으로 이동하는 교통류에 대해서 17시간 (00시~17시)동안 수집했다. 17시간 수집했는데 그중에 검지된 속도는 14km/h에서 98km/h까지 변하는 등, 수집된 자료에는 다양한 교통상태가 포함되어 있는데 이는 각 모형들의 정확한 예측력과 적응성을 평가하기 위함이었다. 각 모형은 예측하고자 하는 시점으로부터 1, 5, 10, 15분 후의 속도를 예측하는 것으로 총 4가지의 예측시간간격으로 각각 실험되었다. 결과는 전반적으로 신뢰성 있게 나왔으나 그중에서도 정확성면에서는 인공신경망과 칼만필터링이 우수했고 적응성면에서는 칼만필터리딩 탁월했다. 또한 1분 후의 속도를 예측하는 결과들은 모형들간에 거의 비슷한 정확도를 보여주었는데 이는 입력변수의 설정이 중요한 것임을 보여주는 것이라 판단된다. 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의

  • PDF

A Comparative study on smoothing techniques for performance improvement of LSTM learning model

  • Tae-Jin, Park;Gab-Sig, Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • In this paper, we propose a several smoothing techniques are compared and applied to increase the application of the LSTM-based learning model and its effectiveness. The applied smoothing technique is Savitky-Golay, exponential smoothing, and weighted moving average. Through this study, the LSTM algorithm with the Savitky-Golay filter applied in the preprocessing process showed significant best results in prediction performance than the result value shown when applying the LSTM model to Bitcoin data. To confirm the predictive performance results, the learning loss rate and verification loss rate according to the Savitzky-Golay LSTM model were compared with the case of LSTM used to remove complex factors from Bitcoin price prediction, and experimented with an average value of 20 times to increase its reliability. As a result, values of (3.0556, 0.00005) and (1.4659, 0.00002) could be obtained. As a result, since crypto-currencies such as Bitcoin have more volatility than stocks, noise was removed by applying the Savitzky-Golay in the data preprocessing process, and the data after preprocessing were obtained the most-significant to increase the Bitcoin prediction rate through LSTM neural network learning.

Urban Gutter Reservoir Operating System Model Using Sensors (센서를 활용한 도심지 측구 저류조 운영 시스템 모델)

  • Lee, Woon Sung;Yuk, Youn Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.399-399
    • /
    • 2022
  • 최근 국지성 호우 등 홍수방어 시설의 설계빈도를 초과하는 강우 발생으로 홍수피해가 증가하고 있다. 그 중 도시지역의 내수침수 피해는 전체 피해액의 50%를 넘는다. 그러나 우수관거의 노후화 및 통수능 부족으로 우수의 즉각적인 배출이 이루어지지 않아 침수피해가 증가하고 있다. 침수피해의 주요 원인 중 저지대 지역 및 우수관거의 통수능력 부족이 침수피해의 가장 큰 원인을 차지한다. 따라서 도심지의 경우 내수침수로 인한 피해가 증가하고 있는 점을 감안하면 배수관거와 연계한 저류시스템 구축으로 침수 빈발 지역의 치수 능력 향상을 통하여 경제적 피해를 저감시킬 수 있다. 저류시스템은 현장 노면수 저류를 위한 측구 저류조와 저류조 운영 시스템을 의미하며, 저류조 운영 시스템 모델에 대한 연구를 수행하였다. 측구 저류조 운영 시스템 구축을 위해서 현장 센싱(Sensing)데이터와 연계할 수 있는 정보체계 및 운영 시스템 모델이 필요하다. 이에 센서를 활용한 도심지 측구 저류조 운영 시스템 모델을 제시한다. 먼저 센서의 구성은 측구 저류조 내의 협소한 공간과 전원공급, 방진·방수 문제를 해결할 수 있도록 구성되어야 하며, 무전원 근거리 이동통신기술(RFID)을 적용하여 측구 저류조 운영 시스템 수집서버와 통신하여 센싱 데이터를 저장한다. 데이터는 근거리 RFID 리더기가 측구 저류조로부터 센싱 정보를 수신하여 통신모듈에 수신한 저류조 개폐도어 열림과 닫힘 시그널(signal), RFID의 고유 ID 등을 전달 받아 운영 시스템 내의 RFID 이력 DB(Database)에 기록한다. 기록된 정보는 각각 RFID 일련번호, 기록 시간, 동적센서 시그널 값 등이 저장되어 각각의 측구 저류조의 상태를 확인할 수 있어야 한다. 저류량 산정을 위해서 GIS기반의 하수도 시설물 속성 데이터를 포함하는 운영 시스템을 구성해야 한다. 운영 시스템은 수집된 센서정보를 시계열 단위로 분석하고 위치정보 기준으로 측구 저류조 내의 총 저류량 산출에 필요한 기초정보를 제공하며 결과를 표출한다. 따라서 하수도 시설물의 속성정보를 포함하여 측구 저류조 및 센서의 속성정보 정의가 필요하며, 공간정보 파일(Shape File)을 적용하여 GIS 운영 시스템을 구축하여야 한다. 운영 시스템은 저류조 만관상태와 총 저류량을 산출하여 침수위험 알림을 제공할 수 있으며, 예상 강우에 따른 도심지 피해를 역으로 예측하여 강우사상 빈도에 따른 측구 저류조 체적을 결정할 수 있다.

  • PDF

Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models (단변량 및 다변량 LSTM을 이용한 농업용 저수지의 저수율 예측)

  • Sunguk Joh;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1125-1134
    • /
    • 2023
  • Out of the total 17,000 reservoirs in Korea, 13,600 small agricultural reservoirs do not have hydrological measurement facilities, making it difficult to predict water storage volume and appropriate operation. This paper examined univariate and multivariate long short-term memory (LSTM) modeling to predict the storage rate of agricultural reservoirs using remote sensing and artificial intelligence. The univariate LSTM model used only water storage rate as an explanatory variable, and the multivariate LSTM model added n-day accumulative precipitation and date of year (DOY) as explanatory variables. They were trained using eight years data (2013 to 2020) for Idong Reservoir, and the predictions of the daily water storage in 2021 were validated for accuracy assessment. The univariate showed the root-mean square error (RMSE) of 1.04%, 2.52%, and 4.18% for the one, three, and five-day predictions. The multivariate model showed the RMSE 0.98%, 1.95%, and 2.76% for the one, three, and five-day predictions. In addition to the time-series storage rate, DOY and daily and 5-day cumulative precipitation variables were more significant than others for the daily model, which means that the temporal range of the impacts of precipitation on the everyday water storage rate was approximately five days.

A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model (은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.229-235
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

Correlation Analyses of the Temperature Time Series Data from the Heat Box for Energy Modeling in the Automobile Drying Process (자동차 건조 공정 에너지 예측 모형을 위한 공조기 온도 시계열 데이터의 상관관계 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we investigate the statistical correlation of the time series for temperature measured at the heat box in the automobile drying process. We show, in terms of the sample variance, that a significant non-linear correlation exists in the time series that consist of absolute temperature changes. To investigate further the non-linear correlation, we utilize the volatility, an important concept in the financial market, and induce volatility time series from absolute temperature changes. We analyze the time series of volatilities in terms of the de-trended fluctuation analysis (DFA), a method especially suitable for testing the long-range correlation of non-stationary data, from the correlation perspective. We uncover that the volatility exhibits a long-range correlation regardless of the window size. We also analyze the cross correlation between two (inlet and outlet) volatility time series to characterize any correlation between the two, and disclose the dependence of the correlation strength on the time lag. These results can contribute as important factors to the modeling of forecasting and management of the heat box's temperature.

Neural Network-based Real-time End Point Detection Specialized for Accelerometer Signal (신경망을 이용한 실시간 가속도 신호 끝점 검출 방법)

  • Lim, Jong-Gwan;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.178-185
    • /
    • 2009
  • A signal processing algorithm is proposed for end point detection which is used commonly in accelerometers-based pattern recognition problem. In the conventional method, end points are detected by manual manipulation with an additive button or algorithm based on statistical computation and highpass filtering to cause critical time delay and difficulty for parameters optimization. As an solution, we propose a focused Time Lagged Feedforward Network(TLFN) with respect to a differential signal of acceleration, which is widely applied for time series forecasting. The simple experiment is conducted with handwriting and the detection performance and response characteristic of the proposed algorithm is tested and analyzed.

  • PDF

A Study on the Tool Fracture Detection Algorithm Using System Identification (시스템인식을 이용한 공구파손검출 알고리듬에 관한 연구)

  • Sa, Seung-Yun;Yu, Eun-Lee;Ryu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.988-994
    • /
    • 1997
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, digital image of time series sequence was acquired by taking advantage of optical technique. Mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR(auto regressive) model was selected for system model and fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, it was found that there was a system stability.