• 제목/요약/키워드: 시계열 데이터 예측

Search Result 539, Processing Time 0.031 seconds

디지털 트윈을 위한 빅데이터 기반 물수급 분석 기법 개발 (Development of big data-based water supply and demand analysis technique for digital twin)

  • 김장경;문수진;여인희;김태정;남우성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.224-224
    • /
    • 2022
  • 물부족, 수질오염, 조류발생 등 효율적 물관리를 위해서는 물정보 통합이 필요하지만 부처별/목적별로 개별 생산·관리되어 물관리 현안에 효과적으로 대응하기 어려운 실정이다. 물관리 현안 대응 의사결정을 위해서는 현재 상황에 대한 정확한 인식과 장래(1,3개월) 수자원 상황을 고려한 예측·분석체계 구축 필요하며, 이를 위해서는 수원별 가용수량, 지역별 물사용량 및 회귀수량 등 지자체, 유역, 하천을 연계한 실제 물이용 정보 기반의 물배분 현황 분석체계 구축이 필요하다. 본 연구에서는 물수급 관련 수요·공급 시설의 위치를 연결하는 물수급 분석 알고리즘 개발을 통해 지형공간정보의 위상(topology) 관계를 설정하여 물수급 분석의 계산순서를 선정하고, 시계열 DB를 입력하여 전국 약 40만개 이상의 일단위 물수급 분석 정보생산체계를 구축하였다. 본 연구에서 개발된 물수급 분석 모형은 향후 물관련 이슈 지역의 용수공급능력 평가 및 디지털트윈 등 다양한 수자원 정책평가에 활용될 것으로 기대된다.

  • PDF

탄소중립을 향하여: 데이터 센터에서의 효율적인 에너지 운영을 위한 딥러닝 기반 서버 관리 방안 (Towards Carbon-Neutralization: Deep Learning-Based Server Management Method for Efficient Energy Operation in Data Centers)

  • 마상균;박재현;서영석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.149-158
    • /
    • 2023
  • 최근 데이터 활용이 중요해짐에 따라 데이터 센터의 중요도도 함께 높아지고 있다. 하지만 데이터 센터는 막대한 전력을 소모함과 동시에 24시간 가동되는 시설이기 때문에 환경적, 경제적 측면에서 문제가 되고 있다. 최근 딥러닝 기법들을 사용하여 트래픽을 예측하거나, 데이터 센터나 서버에서 사용되는 전력을 줄이는 연구들이 다양한 관점에서 이루어지고 있다. 그러나 서버에서 처리되는 트래픽 데이터양은 변칙적이며 이는 서버를 관리하기 어렵게 만든다. 또한, 서버 상황에 따라 서버를 가변적으로 관리하는 기법에 대한 연구들이 여전히 많이 요구되고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 시계열 데이터 예측에 강세를 보이는 장단기 기억 신경망 (Long-Term Short Memory, LSTM)을 기반으로 한 가변적인 서버 관리 기법을 제안한다. 제안된 모델을 통해 서버에서 사용되는 전력을 보다 효과적으로 줄일 수 있게 되며, 현업환경에서 이전보다 안정적이고 효율적으로 서버를 관리할 수 있게 된다. 제안된 모델의 검증을 위해 위키피디아 (Wikipedia)의 데이터 센터 중 6개의 데이터 센터의 전송 및 수신 트래픽 데이터를 수집한 뒤 통계기반 분석을 통해 각 트래픽 데이터의 관계를 분석 및 실험을 수행하였다. 실험 결과 본 논문에서 제안된 모델의 유의미한 성능을 통계적으로 검증하였으며 서버 관리를 안정적이고 효율적으로 수행할 수 있음을 보여주었다.

심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측 (Prediction of Traffic Congestion in Seoul by Deep Neural Network)

  • 김동현;황기연;윤영
    • 한국ITS학회 논문지
    • /
    • 제18권4호
    • /
    • pp.44-57
    • /
    • 2019
  • 여러 대도시에서 교통 혼잡 문제를 해결하기 위해 정확한 교통 흐름을 예측하는 다양한 연구가 진행되었다. 대부분의 연구가 과거의 교통 흐름 패턴이 미래에도 반복될 것이라는 가정하에 예측 모델을 개발하였으나 교통사고 등과 같은 뜻하지 않은 비반복적 교통 패턴을 예측하는 데에는 신뢰성이 낮게 나타났다. 이런 문제를 해결하기 위한 대안으로 지능형 교통 시스템(ITS)을 통해 얻은 빅데이터와 인공지능을 접목한 교통 흐름 예측 연구가 진행되어 왔다. 하지만 시계열 분석에 일반적으로 사용되는 알고리즘인 RNN의 경우, 단기 예측에 최적화되어 장기 예측 정확도가 낮다는 단점을 가지고 있다. 이런 문제를 해결하기 위해 본 논문에서는 기온과 강수량 등의 기상 정보 외에도 각종 외부 요인들을 고려하여 장기적 시점에서 교통 혼잡도를 예측하는 '심층 인공 신경망 모델'을 제안하였다. TOPIS 자료를 이용한 사례 연구 결과 서울시 주요 도로 링크의 교통 혼잡도를 90%에 가까운 정확도로 예측이 가능하였다. 추후 교통사고나 도로 공사와 같은 도로에 영향을 미치는 이벤트 데이터를 추가로 확보할 수 있다면 정확도는 더욱 높아질 것으로 예상된다.

원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델 (Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding)

  • 김광호;장병훈;최황규
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.852-857
    • /
    • 2019
  • 분산자원 집합 거래시장에 참여를 원하는 소비자나 사업자를 위한 가상발전소의 전력거래 플랫폼에서 사업참여자의 수요 자원을 관리하고, 이에 적절한 전략을 제공하기 위해 익일 개별 참여자의 수요와 전체 계통의 전력수요를 예측하는 것이 대단히 중요하다. 이러한 전력거래 플랫폼에서 활용하는 것을 목표로 본 논문은 우선 익일의 24시간 전력계통 전력수요예측 모델을 개발하였다. 본 논문에서는 전력수요예측 데이터의 시계열 특성을 고려하여 딥러닝 기법 중 LSTM 알고리즘을 사용하였고, 전력수요량 등의 입출력 값에 원-핫 인코딩 기법을 적용하는 새로운 시도를 하였다. 성능평가에서 일반 DNN과 본 논문에서 구현된 LSTM 예측모델은 각각 평균 제곱근 오차 4.50, 1.89를 나타내어 LSTM 모델이 예측정확도가 높게 나타났다.

자기회귀 이동평균 모델을 이용한 안드로이드 악성코드 탐지 기법 (Android Malware Detection Using Auto-Regressive Moving-Average Model)

  • 김환희;최미정
    • 한국통신학회논문지
    • /
    • 제40권8호
    • /
    • pp.1551-1559
    • /
    • 2015
  • 최근 스마트 기기가 PC와 유사한 성능을 보이면서, 사용자들은 메신저, SNS(Social Network Service), 은행 업무 등 PC에서 수행했던 업무들을 모바일 기기에서도 수행할 수 있게 되었다. 이 같은 긍정적인 변화와 함께 스마트 기기를 대상으로 하는 공격으로, 보안 위협이 증가하는 부정적인 변화도 나타났다. 대표적으로 사용자의 개인정보 유출, 부당한 과금을 비롯하여 최근에는 DDoS(Distributed Denial of Service) 공격을 발생시키는 봇(Bot)으로 스마트 기기가 활용되면서 모바일 보안에 대한 위협이 증가하는 실정이다. 특히, 스마트 기기의 80% 이상을 차지하는 안드로이드 플랫폼에서의 악성코드를 통한 피해건수가 증가하고 있다. 본 논문에서는 안드로이드의 악성코드를 탐지하기 위해 통계 기반 분석법 중 하나인 시계열 분석법을 제안한다. 시계열 모델 중 기존의 데이터를 기반으로 정확한 예측값을 도출할 수 있는 자기회귀 이동평균 모델을 이용하였으며, Z-Score를 이용한 비정상 데이터 후보군 추출을 통해서 전체 데이터와의 비교 없이 추출된 후보군과의 데이터 비교를 통해서 빠르게 악성코드를 탐지하는 방법을 이용한다. 악성코드 탐지 실험 결과를 통해 제안하는 방법의 타당성을 검증하고자 한다.

강화학습을 이용한 트레이딩 전략 (Trading Strategies Using Reinforcement Learning)

  • 조현민;신현준
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.123-130
    • /
    • 2021
  • 최근 컴퓨터 기술이 발전하면서 기계학습 분야에 관한 관심이 높아지고 있고 다양한 분야에 기계학습 이론을 적용하는 사례가 크게 증가하고 있다. 특히 금융 분야에서는 금융 상품의 미래 가치를 예측하는 것이 난제인데 80년대부터 지금까지 기술적 및 기본적 분석에 의존하고 있다. 기계학습을 이용한 미래 가치 예측 모형들은 다양한 잠재적 시장변수에 대응하기 위한 모형 설계가 무엇보다 중요하다. 따라서 본 논문은 기계학습의 하나인 강화학습 모형을 이용해 KOSPI 시장에 상장되어 있는 개별 종목들의 주가 움직임을 정량적으로 판단하여 이를 주식매매 전략에 적용한다. 강화학습 모형은 2013년 구글 딥마인드에서 제안한 DQN와 A2C 알고리즘을 이용하여 KOSPI에 상장된 14개 업종별 종목들의 과거 약 13년 동안의 시계열 주가에 기반한 데이터세트를 각각 입력 및 테스트 데이터로 사용한다. 데이터세트는 8개의 주가 관련 속성들과 시장을 대표하는 2개의 속성으로 구성하였고 취할 수 있는 행동은 매입, 매도, 유지 중 하나이다. 실험 결과 매매전략의 평균 연 환산수익률 측면에서 DQN과 A2C이 대안 알고리즘들보다 우수하였다.

홍수 위험도 판별을 위한 CNN 기반의 분류 모델 구현 (Implementation of CNN-based classification model for flood risk determination)

  • 조민우;김동수;정회경
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.341-346
    • /
    • 2022
  • 지구온난화 및 이상 기후로 인해 홍수의 빈도 및 피해 규모가 늘어나고 있으며, 홍수 취약 지역에 노출된 사람이 2000년도에 비하여 25% 증가하였다. 홍수는 막대한 금전적, 인명적 손실을 유발하며, 홍수로 인한 손실을 줄이기 위해 홍수를 미리 예측하고 빠른 대피를 결정해야 한다. 본 논문은 홍수 예측을 위한 핵심 데이터인 강우량과 수위 데이터를 활용하여 시기적절한 대피 결정이 이루어질 수 있도록 CNN기반 분류 모델을 활용하여 홍수 위험도 판별 모델을 제안한다. 본 논문에서 제안한 CNN 기반 분류 모델과 DNN 기반의 분류 모델의 결과를 비교하여 더 좋은 성능을 보이는 것을 확인하였다. 이를 통해 홍수의 위험도를 판별하여, 대피 여부 판단하며 최적의 시기에 대피 결정을 내릴 수 있도록 하는 초기 연구로서 활용할 수 있을 것으로 사료된다.

Deep Neural Network를 활용한 초미세먼지 농도 예측에 관한 연구 (A Study on Prediction of PM2.5 Concentration Using DNN)

  • 최인호;이원영;은범진;허정숙;장광현;오종민
    • 환경영향평가
    • /
    • 제31권2호
    • /
    • pp.83-94
    • /
    • 2022
  • 본 연구는 국가측정망(에어코리아)에서 제공하는 2017년, 2019년 및 2020년도 대기질확정 데이터를 이용하여 Deep Neural Network(DNN) 모델을 학습하고, 2016년과 2018년도 데이터를 이용하여 학습된 모델을 평가·검증하였다. 피어슨 상관계수 0.2를 기준으로 SO2, CO, NO2, PM10 항목을 독립변수로 하여 초기 모델링을 진행하였고, 예측의 정확도를 높이기 위한 방법으로 시계열적 요소를 반영한 월별 모델링(개선모델)을 진행하여 초기모델과 비교·분석하였다. 분석에 사용한 지표는 RMSE(Root mean square error) 방법으로 오차를 계산하였으며, 예측 결과 초기모델의 RMSE값은 5.78로 국가측정망의 예측이동 평균모델의 결과(10.77)와 비교하여 초기모델에서 약 46% 오차가 감소하였다. 또한, 개선모델의 경우, 초기모델 대비 11월 모델을 제외한 모든 월별모델에서 정확도 향상이 있었다. 따라서, 본 연구에서는 DNN 모델링이 PM2.5 농도 예측에 효과적인 방법임을 제안할 수 있었으며, 향후 추가적인 독립변수 선정 및 시계열 요소를 고려한 방법으로 모델의 정확도 개선 가능성을 확인할 수 있었다.

RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 (Dynamic forecasts of bankruptcy with Recurrent Neural Network model)

  • 권혁건;이동규;신민수
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.139-153
    • /
    • 2017
  • 기업의 부도는 이해관계자들뿐 아니라 사회에도 경제적으로 큰 손실을 야기한다. 따라서 기업부도예측은 경영학 연구에 있어 중요한 연구주제 중 하나로 다뤄져 왔다. 기존의 연구에서는 부도 예측을 위해 다변량판별분석, 로짓분석, 신경망분석 등 다양한 방법론을 이용하여 모형의 부도 예측력을 높이고 과적합의 문제를 해결하고자 시도하였다. 하지만 기존의 연구들이 시간적 요소를 고려하지 않아 발생할 수 있는 문제점들을 갖고 있음에도 불구하고 부도 예측에 있어서 동적 모형을 이용한 연구는 활발히 진행되고 있지 않으며 따라서 동적 모형을 이용하여 부도예측모형이 더욱 개선될 여지가 있다는 점을 확인할 수 있었다. 이에 본 연구에서는 RNN(Recurrent Neural Network)을 이용하여 시계열 재무 데이터의 동적 변화를 반영한 모형을 만들었으며 기존의 부도예측모형들과의 비교분석을 통해 부도 예측력의 향상에 도움이 된다는 것을 확인할 수 있었다. 모형의 유용성을 검증하기 위해 KIS Value의 재무 데이터를 이용하여 실험을 수행하였고 비교모형으로는 다변량판별분석, 로짓분석, SVM, 인공신경망을 선정하였다. 실험 결과 제안된 모형이 비교 모형에 비해 우수한 예측력을 보이는 것으로 나타났다. 따라서 본 연구는 변수들의 변화를 포착하는 동적 모형을 부도예측에 새롭게 제안하여 부도예측 연구의 발전에 기여할 수 있을 것으로 기대된다.

LSTM을 이용한 주가예측 모델의 학습방법에 따른 성능분석 (A Performance Analysis by Adjusting Learning Methods in Stock Price Prediction Model Using LSTM)

  • 정종진;김지연
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.259-266
    • /
    • 2020
  • 과거 인공지능 분야에서는 지식 기반의 전문가 시스템 및 머신러닝 알고리즘들을 금융 분야에 적용하는 연구가 꾸준하게 수행되어 왔다. 특히 주식에 대한 지식 기반의 시스템 트레이딩은 이제 보편화되었고, 최근에는 대용량 데이터에 기반한 딥러닝 기술을 주가 예측에 적용하기 시작했다. 이중 LSTM은 시계열 데이터에 대한 검증된 모델로서 주가 예측에도 적용되고 있다. 본 논문에서는 주가 예측 모델로서 LSTM을 적용할 때 성능향상을 위해 고려해야 할 복잡한 매개변수 설정과 적용 함수들에 대해 적합한 조합 방법을 제안하도록 한다. 크게 가중치와 바이어스에 대한 초기화 대상과 설정 방법, 과적합을 피하기 위한 정규화 적용 대상과 설정 방법, 활성화 함수 적용 방법, 최적화 알고리즘 선택 등을 제시한다. 이 때 나스닥 상장사들에 대한 대용량 데이터를 바탕으로 각각의 방법들을 적용하여 정확도를 비교하면서 평가한다. 이를 통해 주가 예측을 위한 LSTM 적용 시 최적의 모델링 방법을 실증적인 형태로 제안하여 현실적인 시사점을 갖도록 한다. 향후에는 입력 데이터의 포맷과 길이, 하이퍼파라미터들에 대한 성능평가를 추가 수행하여 주요 설정 항목들의 조합에 대한 일반화 연구를 수행하고자 한다.