효율적인 댐 운영을 위해서는 높은 신뢰도를 기반으로 하는 유입량 예측이 요구된다. 본 연구에서는 최근 다양한 분야에서 사용되고 있는 데이터 기반의 예측 방법 중 하나인 딥러닝을 댐 유입량 예측에 활용하였다. 그 중 시계열 자료 예측에 높은 성능을 보이는 Sequence-to-Sequence 구조기반의 Long Short-Term Memory 딥러닝 모형(LSTM-s2s)을 이용하여 소양강 댐의 유입량을 예측하였다. 모형의 예측 성능을 평가하기 위해 상관계수, Nash-Sutcliffe 효율계수, 평균편차비율, 그리고 첨두값 오차를 이용하였다. 그 결과, LSTM-s2s 모형은 댐 유입량 예측에 대한 높은 정확도를 보였으며, 단일 유량 수문곡선 기반의 예측 성능에서도 높은 신뢰도를 보였다. 이를 통해 홍수기와 이수기에 수자원 관리를 위한 효율적인 댐 운영에 딥러닝 모형의 적용 가능성을 확인할 수 있었다.
전기는 생산과 소비가 동시에 이루어지므로 필요한 전력 사용량을 예측하고, 이를 충족시킬 수 있는 충분한 공급능력을 확보해야만 안정적인 전력 공급이 가능하다. 특히, 대학 캠퍼스는 전력 사용이 많은 곳으로 시간과 환경에 따라 전력 변화폭이 다양하다. 이러한 이유로, 효율적인 전력 공급 및 관리를 위해서는 전력 사용량을 실시간으로 예측할 수 있는 모델이 요구된다. 국내외 대학 건물에 대해서는 전력 사용 패턴과 사례 분석을 통해 전력 사용에 영향을 주는 요인들을 파악하기 위한 다양한 연구가 진행되었으나, 전력 사용량의 정량적 예측을 위해서는 더 많은 연구가 필요한 상황이다. 본 논문에서는, 기계 학습 기법을 이용하여 대학 캠퍼스의 전력 사용량 예측 모델을 구성하고 평가한다. 이를 위해, 대학 캠퍼스의 주요 건물 클러스터에 대해 전력 사용량을 15분마다 1년 이상 수집한 데이터 셋을 사용한다. 수집된 전력 사용량 데이터는 수열 형태의 시계열 데이터로 기계 학습 모델에 적용 시 주기성 정보를 반영할 수 없으므로, 2차원 공간의 연속적인 데이터로 증강함으로써 주기성을 반영하였다. 이 데이터와 교육기관의 특성을 반영하기 위한 요일과 공휴일로 구성된 8차원 특성 벡터에 대해 주성분 분석(Principal Component Analysis) 알고리즘을 적용한다. 이어, 인공 신경망(Artificial Neural Network)과 지지 벡터 회귀분석(Support Vector Regression)을 이용하여 전력 사용량 예측 모델을 학습시키고, 5겹 교차검증(5-fold Cross Validation)을 통하여 적용된 기법의 성능을 평가하여, 실제 전력 사용량과 예측 결과를 비교한다.
국내 코로나19의 감염자 수가 백신과 사회적 거리 두기, 백신 등 여러 가지 노력 덕분에 차츰 줄어드는 듯 보였으나 2020년 2월 20일 특정한 사건 이후 감염자 수가 증가한 것처럼, 2020년 12월부터 또다시 급격히 감염자 수가 증가하는 추세이며 꾸준히 일일 500명가량의 감염자 수가 이어지고 있다. 따라서 Kaggle의 데이터셋을 이용해서 Prophet 알고리즘을 통해 미래 코로나19를 예측하고 사이킷런을 통해 결정계수, 평균 절대 오차, 평균 백분율 오차, 평균 제곱 차, 평균 제곱근 편차를 통해 이 예측에 대한 설명력을 더한다. 또한 코로나19가 급격히 특정한 사건이 없었을 경우 국내 감염자 수를 예측해 앞으로 우리가 미래의 질병에 대해서 방역과 방역 수칙 실천의 중요함을 강조한다.
최근 자율주행 기술의 발전과 더불어 차량의 최적 경로를 예측하기위한 알고리즘이 활발하게 연구되고 있다. 기존 국내에서는 SK, Kakao, Naver등과 같은 기업들에서 차량의 최적 경로를 알려주는 서비스를 시행하고 있다. 언급된 기업들에서 사용하는 기술은 해당 어플리케이션 사용자들의 정보를 실시간으로 입력받아 최적 경로를 예측해준다. 하지만 이러한 방법은 최적 경로를 예측할 수는 있으나 최적 차선경로 까지는 예측할 수 없다. 본 논문에서는 최근 자율주행 차량에 부착된 Lidar 센서를 활용하여 주변 차량의 좌표를 취득 후 최적 차선 경로를 안내하는 시스템을 제안한다. 제안된 방법은 Lidar기반 object detection 방법을 수행한 후 차량의 시계열 좌표 데이터를 취득하여 원활한 차선을 안내하는 시스템이다. 제안하는 방법은 실험결과에서 실제 취득된 데이터를 사용하여 제안하는 방법의 성능을 입증한다.
해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.
본 연구는 건설 안전사고에 대한 트랜드 분석을 위해 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링(Topic Modeling)을 제시하여 분석하고자 한다. 특히, 건설산업의 안전사고를 예방하기 위해 제시되고 있는 기존의 다양한 정형데이터 분석에서 벗어난 비정형 데이터 분석 기반의 토픽 모델링을 통해 건설 안전사고 주요 핵심 키워드의 흐름에 대해 파악이 가능하다. 본 방법론을 적용하기 위해 540개의 건설 안전사고 관련 뉴스데이터를 수집하였다. 이를 기반으로, 10가지 토픽과 각 토픽 내의 10가지 키워드를 통해 주요 이슈를 도출하였고 각 토픽에 대한 2017년 1월부터 2018년 2월까지의 뉴스 데이터를 월별 시계열 분석을 통해 향후 토픽에 관한 이슈를 예측한다. 본 연구를 바탕으로 향후 건설 안전사고의 다양한 이슈를 선제적으로 예측하고 이를 기반으로 건설 안전사고 정책과 연구에 좋은 방향을 제시할 것으로 판단한다.
본 연구에서는 국내 도시가스 일일 수요 예측에 대한 문제를 다룬다. 정확한 일일 수요 예측은 안정적인 도시가스의 수급을 위해서 필수적인 사항으로 실제 가스 공급기관의 일상 업무에 해당한다. 본 연구에서는 수요예측 방법을 고안하기 위하여 일일 도시가스 수요 시계열에 대한 데이터 분석을 수행하였으며, 예측일 수요에 영향을 주는 주요한 요인으로 직전일 수요, 기온, 요일 등을 파악하였다. 본 연구에서는 이러한 요인들을 고려한 회귀 모형과 국내 도시가스 수요 특성에 맞는 선별적 샘플링 절차를 제안하였다. 제안 모형과 선별적 샘플링 절차로 구성된 예측 방법의 성능 검증을 위하여 실제 도시가스 수요에 대한 예측을 수행하였다. 문헌에 소개된 기존 방법과 예측 성능을 비교한 결과, 본 연구에서 제안한 방법의 평균절대백분율오차는 약 2.22%로서 개선 비율은 대략 7%에 해당한다.
본 논문은 영농형 태양광 발전 시스템의 전력 생산량을 수집·저장하여 지능적인 예측 모델을 구현하기 위한 예측 및 진단 모델의 설계와 구현에 대해 논한다. 제안된 모델은 시계열 데이터에 특화된 순환신경망 기법인 RNN, LSTM, GRU 모델을 이용하여 태양광 발전량을 예측하고 각 모델의 하이퍼 파라미터를 다르게 주어 비교 분석하고, 성능을 평가했다. 그 결과 세 모델 모두 MSE, RMSE 지표는 0에 매우 가까우며, R2 지표는 1에 가까운 성능을 보였다. 이를 통해 제안하는 예측 모델은 태양광 발전량을 예측하기에 적합한 모델임을 알 수 있고, 이러한 예측을 이용하여 영농형 태양광 시스템에서 지능적인 운영관리 기능에 적용될 수 있음을 보였다.
최근 한반도 주역 해역의 수온이 꾸준히 증가하고 있다. 수온변화는 어업생태계에 영향을 미칠 뿐만 아니라 해양에서의 군사작전과도 밀접히 연관되어 있다. 본 연구는 딥러닝 기술을 기반으로 하는 다양한 예측모델을 통해 단기간 수온예측을 시도함으로써 어떠한 모델이 수온예측분야에 더욱 적합한지를 제시하는 것에 목적을 두었다. 예측을 위해 사용한 데이터는 국립수산과학원에서 해양 관측부이를 통해 관측한 2016년부터 2020년까지 동해 지역(고성, 양양, 강릉, 영덕)의 수온 데이터이다. 또한 예측을 위한 모델로는 시계열 데이터 예측에 우수한 성능을 보이는 Long Short-Term Memory (LSTM), Bidirectional LSTM 그리고 Gated Recurrent Unit (GRU) 기법을 사용하였다. 기존 연구가 LSTM만을 활용하였던데 반해 이번 연구에서는 LSTM 외에 다양한 기법을 적용함으로써 각 기법의 예측 정확도와 수행시간을 비교하였다. 연구결과, 1시간 예측을 기준으로 모든 관측지점에서 Bidirectional LSTM과 GRU 기법이 실제값과 예측값의 오차가 가장 적은 것으로 확인되었으며, 학습시간에 있어서는 GRU가 가장 빠른 것으로 확인되었다. 이를 통해, 예측 오차를 줄이면서 정확도를 향상하기 위한 수온예측에는 Bidirectional LSTM을 활용하고 대잠작전처럼 정확도 외에 실시간 예측이 필요한 분야에 있어서는 GRU 기법을 활용하는 방안이 더욱 적절할 것으로 판단된다.
Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.