• Title/Summary/Keyword: 시계열 데이터 분석

Search Result 740, Processing Time 0.04 seconds

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Web crawling process of each social network service for recognizing water quality accidents in the water supply networks (물공급네트워크 수질사고인지를 위한 소셜네트워크 서비스 별 웹크롤링 방법론 개발)

  • Yoo, Do Guen;Hong, Seunghyeok;Moon, Gihoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.398-398
    • /
    • 2022
  • 최근 수돗물 공급과정에 있어 적수, 유충 발생 등 지역 단위의 수질문제로 국민의 직간접적인 피해가 발생된 바 있다. 수질문제 발생 시, 소셜네트워크서비스(SNS)에 게시되는 피해 관련 의견은 시공간적으로 빠르게 확산되며, 궁극적으로는 물공급과정 전체의 부정적 인식증가와 신뢰도 저하를 초래한다. 따라서, 물공급시스템에서의 수질사고 발생을 빠르게 인지하는 다양한 방법론의 적용을 통한 피해 최소화를 위한 노력이 반드시 필요하다. 일반적으로 수질사고는 다양한 항목의 실시간 계측기에서 획득되는 시계열자료의 변화양상을 통해 판단할 수 있으나, 이와 같은 방법론의 효율적 적용을 위해서는 선진계측인프라의 도입이 선행되어야 한다. 본 연구에서는 국내의 발달된 정보통신기술환경을 활용하여, 물공급네트워크 내 수질사고인지를 위한 SNS 별 웹크롤링 방법론을 제안하고, 적용결과를 분석하였다. 방법론의 구현에 앞서, 각종 SNS 별(트위터, 인스타그램, 블로그, 네이버 카페 등) 프로그래밍을 통한 웹크롤링 가능여부, 정보획득 기간 등을 확인하였으며, 과거 유사 수질사고 발생 시 영향력과 관련 게시글이 크게 나타난 네이버 카페와 트위터를 중심으로 웹 크롤링 절차를 제시하였다. 네이버 카페의 경우 대상급수구역 내의 시민들이 다수 참여하는 카페를 목록화하고, 지자체명과 핵심 키워드(수돗물, 유충, 적수) 조합을 활용한 웹크롤링을 수행하여, 관련 게시물 건수와 의미를 실시간으로 분석하는 절차를 마련하였다. 개발된 SNS 별 웹크롤링 방법론에 따라 과거 수질사고가 발생된 바 있는 2개 이상의 지자체에 대한 분석을 실시하였으며, SNS 별 결과에 있어 차이점을 확인하여 제시하였다. 향후 제안된 방법을 적용하여 시공간적 수질사고 정보의 전파 및 확산양상을 추가적으로 분석할수 있을 것으로 기대된다.

  • PDF

The Effectiveness of Fiscal Policies for R&D Investment (R&D 투자 촉진을 위한 재정지원정책의 효과분석)

  • Song, Jong-Guk;Kim, Hyuk-Joon
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.1-48
    • /
    • 2009
  • Recently we have found some symptoms that R&D fiscal incentives might not work well what it has intended through the analysis of current statistics of firm's R&D data. Firstly, we found that the growth rate of R&D investment in private sector during the recent decade has been slowdown. The average of growth rate (real value) of R&D investment is 7.1% from 1998 to 2005, while it was 13.9% from 1980 to 1997. Secondly, the relative share of R&D investment of SME has been decreased to 21%('05) from 29%('01), even though the tax credit for SME has been more beneficial than large size firm, Thirdly, The R&D expenditure of large size firms (besides 3 leading firms) has not been increased since late of 1990s. We need to find some evidence whether fiscal incentives are effective in increasing firm's R&D investment. To analyse econometric model we use firm level unbalanced panel data for 4 years (from 2002 to 2005) derived from MOST database compiled from the annual survey, "Report on the Survey of Research and Development in Science and Technology". Also we use fixed effect model (Hausman test results accept fixed effect model with 1% of significant level) and estimate the model for all firms, large firms and SME respectively. We have following results from the analysis of econometric model. For large firm: i ) R&D investment responds elastically (1.20) to sales volume. ii) government R&D subsidy induces R&D investment (0.03) not so effectively. iii) Tax price elasticity is almost unity (-0.99). iv) For large firm tax incentive is more effective than R&D subsidy For SME: i ) Sales volume increase R&D investment of SME (0.043) not so effectively. ii ) government R&D subsidy is crowding out R&D investment of SME not seriously (-0.0079) iii) Tax price elasticity is very inelastic (-0.054) To compare with other studies, Koga(2003) has a similar result of tax price elasticity for Japanese firm (-1.0036), Hall((l992) has a unit tax price elasticity, Bloom et al. (2002) has $-0.354{\sim}-0.124$ in the short run. From the results of our analysis we recommend that government R&D subsidy has to focus on such an areas like basic research and public sector (defense, energy, health etc.) not overlapped private R&D sector. For SME government has to focus on establishing R&D infrastructure. To promote tax incentive policy, we need to strengthen the tax incentive scheme for large size firm's R&D investment. We recommend tax credit for large size film be extended to total volume of R&D investment.

  • PDF

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.

Impact of Fluctuations in Construction Business on Insolvency of Construction Company by Size (건설경기 변동이 규모별 건설기업 부실화에 미치는 영향 분석)

  • Lee, Sanghyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.147-156
    • /
    • 2016
  • This study analyzed the impact of changes in the construction business on construction company insolvency according to their size using the vector error correction model. First, this study applied EDF (Expected Default Frequency), which was calculated by KMV (Kealhofer, McQuown and Vasicek) model, as a variable to indicate the insolvency of construction companies. This study set 30 construction companies listed to KOSPI/KOSDAQ for estimating the EDF by size and construction companies were divided into two groups according to their size. To examine the construction business cycles, the amount of construction orders according to the type-residential, non-residential, and civil work- was used as a variable. The serial data was retrieved from TS2000 established by the Korea Listed Companies Association (KLCA), Statistics Korea. The analysis period was between the second quarter of 2001 and fourth quarter of 2015. As a result of calculating the EDF of construction companies by size, as it is generally known, the large-sized construction companies showed lower levels of insolvency than relatively smaller-sized construction companies. On the other hand, impulse response analysis based on VECM confirmed that the level of insolvency of large-scaled companies is more sensitive to business fluctuations than relatively smaller-sized construction companies, particularly changes in the residential construction market. Hence it is a major factor affecting the changes in insolvency of large-sized construction companies.

Analysis of the differences in living population changes and regional responses by COVID-19 outbreak in Seoul (코로나-19에 따른 서울시 생활인구 변화와 동별 반응 차이 분석)

  • Jin, Juhae;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.697-712
    • /
    • 2020
  • New infectious diseases have broken out repeatedly across the world over the last 20 years; COVID-19 is causing drastic changes and damage to daily lives. Furthermore, as there is no denying that new epidemics will appear in the future, there is a continuous need to develop measures aimed towards responding to economic damage. Against this backdrop, the living population is an important indicator that shows changes in citizens' life patterns. This study analyzes time-based and socio-environmental characteristics by detecting and classifying changes in everyday life caused by COVID-19 from the perspective of the floating population. k-shape Clustering is used to classify living population data of each of the 424 dong's in Seoul measured by the hour; then by applying intervention analysis and One-way ANOVA, each cluster's characteristics and aspects of change in the living population occurring in the aftermath of COVID-19 are scrutinized. In conclusion, this study confirms each cluster's obvious characteristics in changes of population flows before and after the confirmation of coronavirus patients and distinguishes groups that reacted sensitively to the intervention times on the basis of COVID-related incidents from those that did not.

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.