KIPS Transactions on Software and Data Engineering
/
v.7
no.2
/
pp.51-62
/
2018
High utility sequential pattern (HUSP) mining has been considered as an important research topic in data mining. Although some algorithms have been proposed for this topic, they incur the problem of producing a large search space for HUSPs. The tighter utility upper bound of a sequence can prune more unpromising patterns early in the search space. In this paper, we propose a sequence expected utility (SEU) as a new utility upper bound of each sequence, which is the maximum expected utility of a sequence and all its descendant sequences. A sequence utility list for each pattern is used as a new data structure to maintain essential information for mining HUSPs. We devise an algorithm, high sequence utility list-span (HSUL-Span), to identify HUSPs by employing SEU. Experimental results on both synthetic and real datasets from different domains show that HSUL-Span generates considerably less candidate patterns and outperforms other algorithms in terms of execution time.
Code Optimization is converting to a code that is equivalent to given program but more efficient, and this process is processed in Code Optimizer. This paper designed and processed Code Optimizer Generator that automatically generates Code Optimizer. In other words Code Optimizer is automatically generated for DFA Pattern Matching which finds the optimal code for the incoming pattern description. DFA Pattern Matching removes redundancy comparisons that occur when patterns are sought for through normalization process and improves simplification and structure of pattern shapes for low cost. Automatic generation of Code Optimization for DFA Pattern Matching eliminates extra effort to generate Code Optimizer every time the code undergoes various transformations, and enables formalism of Code Optimization. Also, the advantage of making DFA for optimization is that it is faster and saves cost of Code Optimizer Generator.
We had proposed the RPA(Recursive Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. That algorithm worked not bad in many area, however, the major drawbacks of RPA are it's partitioning condition and the way of extracting major patterns. We propose an adaptive RPA algorithm which uses the FPD(feature-based population densimeter) to stop the ARPA partitioning process and produce, instead of RPA's averaged major pattern, optimizing resulting hyperrectangles. The proposed algorithm required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the RPA. Also, by reducing the number of stored patterns, it showed an excellent results in terms of classification when we compare it to the k-NN.
Journal of the Korea Society of Computer and Information
/
v.14
no.3
/
pp.139-147
/
2009
The memory based reasoning just stores in the memory in the form of the training pattern of the representative pattern. And it classifies through the distance calculation with the test pattern. Because it uses the techniques which stores the training pattern whole in the memory or in which it replaces training patterns with the representative pattern. Due to this, the memory in which it is a lot for the other machine learning techniques is required. And as the moreover stored training pattern increases, the time required for a classification is very much required. In this paper, We propose the EAS(Evaluation And Selection) algorithm in order to minimize memory usage and to improve classification performance. After partitioning the training space, this evaluates each partitioned space as MDL and PM method. The partitioned space in which the evaluation result is most excellent makes into the representative pattern. Remainder partitioned spaces again partitions and repeat the evaluation. We verify the performance of Proposed algorithm using benchmark data sets from UCI Machine Learning Repository.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.127-133
/
2019
Since frequent item extraction so far requires searching for patterns and traversal for the FP-Tree, it is more likely to store the mining data in a tree and thus CPU time is required for its searching. In order to overcome these drawbacks, in this paper, we provide each item with its location identification of transaction data without relying on conditional FP-Tree and convert transaction data into 2-dimensional position information look-up table, resulting in the facilitation of time and spatial accessibility. We propose an algorithm that considers the mapping scheme between the location of items and items that guarantees the linear time complexity. Experimental results show that the proposed method can reduce many execution time and memory usage based on the data set obtained from the FIMI repository website.
Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.251-258
/
2009
Data mining is a method that extract useful knowledges from huge size of data. Recently, a focussing research part of data mining is to find interesting patterns in graph databases. More efficient methods have been proposed in graph mining. However, graph analysis methods are in NP-hard problem. Graph pattern mining based on pattern growth method is to find complete set of patterns satisfying certain property through extending graph pattern edge by edge with avoiding generation of duplicated patterns. This paper suggests an efficient approach of reducing computing time of pattern growth method through pattern growth's property that similar patterns cause similar tasks. we suggest pruning methods which reduce search space. Based on extensive performance study, we discuss the results and the future works.
Kim, Hyun Il;Han, Kun Yeun;Keum, Ho Jun;Lee, Jae Young;Kim, Beom Jin
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.33-33
/
2019
최근 반복적인 도시침수 피해가 발생하고 있으나 다양한 강우 및 홍수 자료를 이용하여 실시간으로 침수분석을 실시할 수 있는 기술력이 부재한 실정이다. 한정된 시나리오에 따라 다양한 강우패턴에 의한 침수지역 파악에 어려움이 있으며, 불필요한 자료의 사용으로 인해 짧은 시간에 발생하는 도시침수에 대해 실시간으로 대응하는 데에 한계가 있다. 본 연구에서는 다양한 강우패턴과 극치강우 사상을 반영하기 위한 강우시간 분포법을 나타내고자 하였으며, 강우-유출 자료에 대한 최적의 자료조합을 선정하는 정량적 기준을 제시하고자 하였다. 지역 특성에 따른 극치강우사상의 시간분포에 대한 연구가 다양하게 진행되어 왔지만, 기존의 강우시간분포는 다양한 강우의 집중현상을 나타내기에는 한계가 있음을 보였다. 따라서 본 연구에서는 기존 강우시간분포 기법의 단점을 보완하고 극치강우사상의 집중지속시간 특성을 반영한 강우시간분포 방법과 Huff에 의한 강우시간 분포법을 사용하여 다양한 강우시나리오를 생성하였다. 본 연구에서는 부산 및 울산 연구대상지역의 도시유출해석의 입력 자료로서 사용하였다. 강우 및 유출 자료의 상관성 분석과 불확실도 분석을 기반으로 추후 홍수예측을 위한 최적의 입력 자료를 선정하고자 하였다. 위의 과정들을 통해 다양한 강우조건에 따른 연구대상 지역에서의 침수예상도를 분석할 수 있었으며, 선정된 극치강우사상을 통해 다양한 강우의 집중현상을 나타낼 수 있었다. 1차원 도시유출해석을 실시하여 구축한 강우-유출 데이터베이스의 최적화를 위해 불확실도 분석을 실시하였으며, 수리학적 특성이 고려된 입력 및 출력자료에 대한 사용자의 합리적인 판단을 위해 정량적 기준을 제시하고자 하였다. 더욱이 제시된 방법론을 이용함에 따라 지속적으로 나타나는 국지성 호우와 급변하는 수재해 양상에 능동적으로 대처하는데 도움을 줄 수 있는 기초자료를 제공할 것으로 판단된다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.10
no.4
/
pp.11-23
/
2011
The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.
In ROI processing of JPEG2000, a region of large image indicated by the user must be processed preferentially, because it takes a considerable amount of time to display the full image. When the user indicates a region of the outlined image, then the browser masks the region and sends the mask information to the server that transmitted the outlined image. The server that receives the mask information preferentially sends the corresponding code blocks. Here, a quick generation of mask information is important. In this paper, we use 48 predefined mask patterns, which are defined according to the distribution shape of ROI and background to reduce the computing time. As a result, compared to other methods that precisely handles the ROI and background, the processing time of the method is remarkably reduced, but the quality is short of the existing methods just a little bit.
Journal of the Korea Society of Computer and Information
/
v.4
no.1
/
pp.28-37
/
1999
In this paper. we developed a delay test architecture and test procedure for clocked 5-bit asynchronous counter circuit based on boundary scan architecture. To develope, we analyze the problems of conventional method on delay test for clocked sequential circuit in boundary scan architecture. This paper discusses several problems of delay test on boundary scan architecture for clocked sequential circuit. Conventional test method has some problems of improper capture timing, of same pattern insertion, of increase of test time. We suggest a delay test architecture and test procedure, is based on a clock count-generation technique to generate continuous clocks for clocked input of CUT. The simulation results or 5-bit counter shows the accurate operation and effectiveness of the proposed delay test architecture and procedure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.