• 제목/요약/키워드: 시간 마이닝

검색결과 401건 처리시간 0.02초

하이브리드 플래시-디스크 저장장치용 Flash Translation Layer의 성능 개선을 위한 순차패턴 마이닝 기반 2단계 프리패칭 기법 (Improving Flash Translation Layer for Hybrid Flash-Disk Storage through Sequential Pattern Mining based 2-Level Prefetching Technique)

  • 장재영;윤언근;김한준
    • 한국전자거래학회지
    • /
    • 제15권4호
    • /
    • pp.101-121
    • /
    • 2010
  • 본 논문은 플래시 메모리와 하드디스크로 구성되는 하이브리드 저장장치의 성능을 높이기 위한 프리패칭 기법을 제안한다. 하이브리드 저장장치에 포함된 플래시 메모리는 하드디스크에 비해 쓰기/읽기 연산 속도가 상대적으로 빠르기 때문에 이를 캐시 공간처럼 활용하여 성능을 높일 수 있다. 프리패칭을 위한 기본 전략은 순차패턴 마이닝을 이용하는 것이며, 이를 이용하면 시간적 흐름을 가지는 과거 객체 참조열로부터 반복되는 객체 접근 패턴을 추출할 수 있다. 프리패칭 기법을 사용하여 하이브리드 저장장치의 성능을 최대화하기 위하여 본 논문은 두 가지 방법을 사용하였다. 첫 번째는 플래시 메모리 매핑을 위하여 기존의 FAST 알고리즘을 개선하였고, 두 번째는 제한된 플래시 메모리의 공간을 효율적으로 사용하기 위하여 프리패칭 단위로 파일 수준과 블록 수준을 동시에 고려하였다. 제안 기법의 효용성을 평가하기 위해 참조 지역성을 가지는 합성 데이터와 UCC 데이터를 활용하여 실험을 실시하여 제안된 방법의 우수성을 증명하였다.

효과적인 공간 데이터 마이닝을 위한 SOA 기반 데이터 통합 프레임워크 설계 (A Design of SOA-based Data Integration Framework for Effective Spatial Data Mining)

  • 문일환;허환;김삼근
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.385-392
    • /
    • 2011
  • 최근 농업 분야에 IT를 접목시킨 농업-IT 융합 기술에 대한 연구가 주목 받고 있다. 특히, 공간 데이터 마이닝(spatial data mining, SDM)을 이용한 농작물 관련 예측 서비스들을 통해 자연재해에 대한 피해를 줄이고 농작물의 생산성을 높이고자 하는 연구들이 있어 왔다. 그러나 예측 서비스를 위한 SDM에 필요한 학습 데이터는 분산되어 있는 데이터간의 이질성으로 인해 데이터 변환과 통합과정에 많은 비용과 시간이 발생한다. 또한 공간 데이터와 비공간 데이터 간의 공간적 이웃 관계를 연산하기 위해 대용량의 데이터에 대한 복잡한 연산과정이 필요하다. 본 논문에서는 각각의 데이터 소스를 하나의 서비스 단위로 취급함으로써 분산된 이질적인 데이터를 효과적으로 통합 관리할 수 있고 SDM을 위한 학습 데이터의 생산성을 향상시켜 최적의 예측 서비스의 발견을 지원해 주는 SOA 기반의 데이터 통합 프레임워크를 제안한다. 실험을 통해 경기도 이천시의 복숭아나무의 동해 피해지역에 대한 최적의 예측 서비스의 발견을 위해 제안 프레임워크를 효과적으로 적용할 수 있음을 확인하였다.

마이닝 기반 유비쿼터스 헬스케어 멀티에이전트 시스템 (A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments)

  • 강은영
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2354-2360
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경에서 가장 널리 사용 가능한 분야는 헬스케어 분야이다. 본 논문에서는 유비쿼터스 환경에서 마이닝 기반 멀티 에이전트 헬스케어 시스템을 제안한다. 제안하는 기법은 환자의 몸으로부터 생성된 센싱 데이터를 마이닝을 이용하여 진단 패턴을 뽑아내어 정상 상태, 긴급 상태, 응급 상황으로 분류할 수 있다. 이는 실시간으로 센싱되는 엄청난 양의 생체 데이터를 처리할 수 있으며, 환자의 병력 데이터와 비교, 분석한다. 이를 위해 연관 규칙 탐사를 2가지 데이터 그룹으로 구분하여 적용한다. 첫 번째는, 기존의 방대한 의료 병력 데이터로 두 번째는, 체온, 혈압, 맥박등과 같은 센서로부터 센싱한 환자의 실시간 생체데이터로 분류한다. 제안하는 시스템은 PDA 같은 모바일 디바이스 등을 통하여 병원과 멀리 떨어진 지역에서도 긴급 상황을 판단하여 처리할 수 있다. 또한 환자(노인)의 상태를 실시간으로 모니터링 함으로써 요구되는 시간과 비용을 단축하게 되고, 의료 서비스의 지원에 대한 효율성을 높이게 된다.

데이타마이닝에서 고차원 대용량 데이타를 위한 셀-기반 클러스터 링 방법 (A Cell-based Clustering Method for Large High-dimensional Data in Data Mining)

  • 진두석;장재우
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권4호
    • /
    • pp.558-567
    • /
    • 2001
  • 최근 데이타마이닝 응용분야에서는 고차원 대용량 데이타가 요구되고 있다. 그러나 기존의 대부분의 데이타마이닝을 위한 알고리즘들은 소위 차원의 저주(dimensionality curse)[1] 문제점과 이용 가 능한 메모리의 한계 때문에 고차원 대용량 데이타에는 비효율적이다. 따라서, 본 논문에서는 이러한 문제 점을 해결하기 위해서 셀-기반 클러스터링 방법을 제안한다. 제안하는 진-기반 클러스터링 방법은 고차원 대용량 데이타를 효율적으로 처리하기 위한 셀 구성 알고리즘과 필터링에 기반한 저장인덱스 구조를 제공 한다. 본 논문에서 제안한 셀-기반 클러스터링 방법을 (CLQUE 방법과 클러스터링 시간, 정확율, 검색시 간 관점에서 성능을 비교한다. 마지막으로, 실험결과 제안하는 셀-기반 클러스터링 방법이 CLIQUE 방법 에 비해 성능이 우수함을 보인다

  • PDF

텍스트마이닝을 활용한 농업 R&D 키워드 분석 (A Study on the Analysis of Agricultural R&D Keywords Using Textmining Method)

  • 김지훈;김성섭
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.721-732
    • /
    • 2021
  • 본 연구는 농업 R&D의 추세를 살펴보고자 텍스트마이닝 기법을 활용하여 농업 R&D에 해당하는 키워드를 분석하였다. 분석자료는 NTIS의 국가연구개발사업 과제정보를 활용하였으며, 2003년부터 2018년까지의 농업 R&D의 주요 키워드를 연도별 및 연구개발단계별로 구분하였다. 텍스트마이닝을 위해 키워드의 TF-IDF를 계산하여 점수별로 순위를 매기었으며, 유사한 키워드별로 그룹화하여 해석하였다. 주요 분석 결과는 다음과 같다. 첫 번째, 신기술의 도입과 외부 환경에 변화에 따른 농업 R&D 트렌드가 변화해가고 있다. 시간이 흐를수록 새로운 키워드가 대두되고 있으며, 기초연구 단계에서는 '기후변화'가, 응용연구 단계에서는 'ICT'와 '스마트팜'이, 개발연구 단계에서는 '수출' 키워드가 주되게 등장하고 있다. 두 번째, 연구개발 단계에서 시차를 가지고 키워드 변화가 나타나고 있다. 기초연구-응용연구-개발연구 순으로 주요 키워드가 변화하고 있으며, 대표적으로 '기후변화'와 '신품종' 키워드가 연구개발단계별로 연계되어 있었다. 세번째, 농업 R&D의 대표적인 키워드는 '벼' 키워드로 나타났다. 그러나 '녹색 및 기후변화 대응'과 '가공 및 유통기술' 같이 국내외 농업 환경 변화에 따라 연구의 방향성과 목적이 변화하고 있었다.

데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구 (A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining)

  • 박천규;마정목
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.234-241
    • /
    • 2021
  • 군에서는 수요예측에 대한 중요성을 인식하여 수리부속에 대해 예측 정확도 향상을 위한 많은 연구가 이루어지고 있다. 수리부속 수요예측은 예산 운영과 장비 가동률 측면에서 매우 중요한 요소가 되고 있다. 그러나 현재 군에서 적용중인 시계열 모형으로는 수요량의 변동과 발생주기가 일정하지 않은 간헐적 수요에 대해서는 예측에 한계가 있는 실정이다. 따라서, 본 연구는 공군 패트리어트 수리부속의 간헐적 수요에 대한 예측 정확도를 제고하는 방법을 제시하고자 하였다. 이를 위해서 2013년부터 2019년까지의 701개의 수리부속 소모개수를 토대로 수요 유형을 구분하여 수리부속의 간헐적 수요 자료를 수집하였다. 또한, 장비 고장에 영향을 줄 수 있는 외부 요인으로는 기온, 장비운영시간을 식별하여 입력변수로 선정하였다. 그 후, 소모개수와 외부 요인을 통해 군에서 적용하는 시계열 모형과 제안하는 데이터 마이닝 모형으로 예측을 실시하여 모형별 예측 정확도를 판단했다. 예측 결과로 기존의 시계열 모형과 비교하여 데이터 마이닝 모형의 예측 정확도가 높았으며, 그 중 다층 퍼셉트론 모형이 가장 우수한 성능을 보였다.

그리드 기반 표본의 무게중심을 이용한 케이-평균군집화 (K-means clustering using a center of gravity for grid-based sample)

  • 이선명;박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.121-128
    • /
    • 2010
  • 케이-평균 군집분석은 데이터들을 k개의 군집으로 임의로 분할을 하여 군집의 평균을 대푯값으로 분할해 나가는 방법으로 데이터들을 유사성을 바탕으로 재배치를 하는 방법이다. 이러한 케이-평균 군집분석은 시장조사, 패턴분석 및 인식, 그리고 이미지 처리 분야 등에서 폭넓게 응용되고 있다. 그러나 대용량의 데이터베이스를 분석대상으로 하므로 그 만큼 데이터 처리 시간이 많이 소요되는 것이 문제 중의 하나이다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 데이터 마이닝 방법이 사용되어지고 있는데 처리 속도 문제는 더욱 중요하게 생각하고 있다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 분할 군집법에서 가장 일반적으로 사용되고 있는 케이-평균 알고리즘에 대해 그리드를 기반으로 한 무게중심 알고리즘을 제안하고자 한다.

감성분석을 위한 병렬적 HDFS와 맵리듀스 함수 (A Parallel HDFS and MapReduce Functions for Emotion Analysis)

  • 백봉현;류윤규
    • 한국정보컨버전스학회논문지
    • /
    • 제7권2호
    • /
    • pp.49-57
    • /
    • 2014
  • 최근 대량의 SNS(Social Network Service) 데이터로부터 유용한 정보를 추출하고 사용자의 진의 정보를 평가하기 위한 오피니언 마이닝(opinion mning)이 소개되고 있다. 오피니언 마이닝은 대량의 SNS 데이터로부터 빠른 기간 내에 데이터를 수집하고 분석하여 목적에 적합한 정보를 추출하는 효율적인 기법이 필요하다. SNS에서 발생되는 다양한 비정형 데이터로부터 감성정보를 추출하기 위해, 본 논문에서는 하둡(Hadoop) 시스템 기반의 병렬적 HDFS(Hadoop Distributed File System)와 맵리듀스(MapReduce) 기반 감성분석 함수를 제안한다. 실험결과로 제안한 시스템과 함수는 데이터 수집과 적재시간에 대해 O(n)보다 빠르게 처리하며, 메모리와 CPU 자원에 대해 안정적인 부하분산이 이루어지는 것을 확인하였다.

  • PDF

클레멘타인 데이터마이닝 솔루션을 이용한 웹 로그 분석 (Analysis of Web Log Using Clementine Data Mining Solution)

  • 김재경;이건창;정남호;권순재;조윤호
    • 경영정보학연구
    • /
    • 제4권1호
    • /
    • pp.47-67
    • /
    • 2002
  • 1990년대 중반 이후 기업들은 인터넷상에서 사용자의 행동에 대한 관심이 높아짐에 따라, 인터넷상에서 사용자의 웹 사이트 클릭 정보가 남아 있는 웹 로그파일에 대한 관심 역시 높아지고 있다. 웹 로그파일에는 사용자 IP, 사용시간, 방문한 주소, 참조주소, 쿠키 파일 등 다양한 정보가 남기 때문에 이것을 이용하면 사용자의 웹 사이트 행위를 구체적으로 분석할 수 있다. 또한, 특정한 유형의 사용자와 관련된 웹 사이트를 찾아 효과적인 마케팅 전략을 수립할 수도 있다. 본 연구에서는 SPSS사의 데이터마이닝 도구인 클레멘타인을 이용하여 웹 마이닝을 할 수 있는 방법론을 소개하고, 실제 인터넷 허브 사이트의 로그화일을 대상으로 분석을 수행하였다.

학습을 통한 탐지 모델 생성 시스템 (Detection Model Generation System using Learning)

  • 김선영;오창석
    • 한국콘텐츠학회논문지
    • /
    • 제3권1호
    • /
    • pp.31-38
    • /
    • 2003
  • 본 논문에서는 탐지 모델을 자동 생성하여 인력, 시간에서의 효율성과 오탐율을 향상시키는 학습을 통한 탐지 모델 생성 시스템을 제안한다. 제안된 탐지 모델 생성 시스템은 agent 시스템과 manager 시스템으로 구성되고 agent 시스템은 탐지 모델 데이터베이스를 기반으로 센서의 역활을 수행하고 manager 시스템에서는 탐지 모델 생성과 모델 분산의 역할을 수행한다. 모델 생성은 유전적 알고리즘에 의해 기존의 정형화된 포맷의 탐지 모델을 학습시켜 모델을 생성하고 새로운 탐지 모델로 적용할 수 있다. 실험 결과에 따라 제안된 데이터 마이닝 기반의 탐지 모델 생성 시스템은 기존의 침입 탐지 시스템보다 효율적으로 침입을 탐지하였다. 구현된 시스템으로 인하여 새로운 유형의 침입 시 탐지 모델 생성과, False-Positive율의 감소를 가져와 기존 침입 탐지 시스템의 성능을 개선하여 탐지모델 생성 시스템을 제안한다.

  • PDF