• 제목/요약/키워드: 시간기반 추론 알고리즘

검색결과 65건 처리시간 0.023초

사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법 (An Analysis Method of User Preference by using Web Usage Data in User Device)

  • 이승화;최형기;이은석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.189-199
    • /
    • 2009
  • 최근 인터넷 상에 정보가 방대해지면서 사용자의 요구에 맞는 정보 필터링과 개인화 서비스가 매우 중요해지고 있다. 특히 전자상거래 분야에서 상거래를 활성화시키고 정보 제공자에 대한 만족도와 충성도를 높이기 위해, 사용자의 취향을 기반으로 한 정보 추천은 필수적인 요소가 되었다. 기존 추천 시스템은 사용자의 관심 정보를 기술한 사용자 프로파일을 대부분 정보 제공자 측에서 각각 개별적으로 수집하고 이를 기초로 추천 서비스를 제공한다. 따라서 사용자의 정보는 각 정보 제공자 측에 분산되어 존재하며, 사용자 정보가 부족한 서버에서는 초기에 추천 전략을 세우기 어렵다는 문제가 있다. 또한 사용자정보를 가지고 있는 서버의 경우에도 사용자가 해당 서버를 주기적으로 방문하지 않았다면, 사용자의 동적인 취향 변화를 반영하기 어렵다. 따라서 본 논문에서는 사용자의 행동을 통합적이고, 지속적으로 관찰할 수 있는 사용자 기기에서, 사용자가 이용한 웹 문서 분석을 통해 사용자의 관심 분야를 추론하고, 이를 다른 정보 제공자가 이용하는 새로운 구조의 추천 시스템을 제안한다. 또한 제안 시스템은 보다 효율적인 프로파일 생성을 위해, 웹 페이지에서 식별된 정보 블록에서 관심 단어를 추출하고, 앵커 태그를 분석하여 사용자의 이동 경로를 추적하는 특징을 포함하고 있다. 이러한 제안 시스템의 특징을 통해, 사용자 정보가 부족한 상점에서도 초기에 개인화 서비스 제공이 가능해지며, 사용자가 평소에 이용하는 웹 문서로부터 프로파일을 생성함으로써, 사용자의 동적인 취향 변화를 반영할 수 있다. 또한 정보 블록에서 취향 정보를 추출하는 알고리즘을 통해 보다 빠르고 정확한 프로파일 생성이 가능해진다. 본 논문에서는 최근 구매 활동이 있었던 사용자들의 웹 검색 히스토리와 구매 데이터를 이용하여 제안 시스템의 추천 정확도와 프로파일 분석에 소요되는 시간 측면의 이득을 실험하였으며, 그 결과를 통해 시스템의 유효성을 확인하였다.

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.29-35
    • /
    • 2020
  • 본 논문에서는 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 최근 자연어처리 분야는 방대한 양의 말뭉치로 사전 학습된 언어 표현 모델을 활용하는 연구가 활발하다. 특히 자연어처리 분야 중 하나인 개체명인식은 대부분 지도학습 방식을 사용하는데, 충분히 많은 양의 학습 데이터 세트와 학습 연산량이 필요하다는 단점이 있다. 강화학습은 초기 데이터 없이 시행착오 경험을 통해 학습하는 방식으로 다른 기계학습 방법론보다 조금 더 사람이 학습하는 과정에 가까운 알고리즘으로 아직 자연어처리 분야에는 많이 적용되지 않은 분야이다. 아타리 게임이나 알파고 등 시뮬레이션 가능한 게임 환경에서 많이 사용된다. BERT는 대량의 말뭉치와 연산량으로 학습된 구글에서 개발한 범용 언어 모델이다. 최근 자연어 처리 연구 분야에서 높은 성능을 보이고 있는 언어 모델이며 많은 자연어처리 하위분야에서도 높은 정확도를 나타낸다. 본 논문에서는 이러한 DQN, BERT 두가지 딥러닝 모델을 이용한 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 제안하는 모델은 범용 언어 모델의 장점인 언어 표현력을 기반으로 강화학습 모델의 학습 환경을 만드는 방법으로 학습된다. 이러한 방식으로 학습된 DeNERT 모델은 적은 양의 학습 데이터세트로 더욱 빠른 추론시간과 높은 성능을 갖는 모델이다. 마지막으로 제안하는 모델의 개체명 인식 성능평가를 위해 실험을 통해서 검증한다.

사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구 (An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining)

  • 이형일;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.47-73
    • /
    • 2020
  • KTX 차량은 수많은 기계, 전기 장치 및 부품들로 구성되어 있는 하나의 시스템으로 차량의 유지보수에는 상당히 많은 전문성과 유지보수 작업자들의 경험을 필요로 한다. 차량 고장발생 시 유지보수자의 지식과 경험에 따라 문제 해결의 시간과 작업의 질적 차이가 발생하며 그에 따른 차량의 가용율이 달라진다. 일반적으로 문제해결은 고장 매뉴얼을 기반으로 하지만 경험이 많고 능숙한 전문가의 경우는 이와 더불어 개인의 노하우를 접목하여 신속하게 진단하고 조치를 취한다. 이러한 지식은 암묵지 형태로 존재하기 때문에 후임자에게 완전히 전수되기 어려우며, 이를 위해 사례기반의 철도차량 전문가시스템을 개발하여 데이터화된 지식으로 바꾸려고 하는 연구들이 있어왔다. 하지만, 간선에 가장 많이 투입되고 있는 KTX 차량에 대한 연구나 텍스트의 특징을 추출하여 유사사례를 검색하는 시스템 개발은 아직 미비하다. 따라서, 본 연구에서는 이러한 차량 유지보수 전문가들의 노하우를 통해 수행된 고장들에 대한 진단과 조치 이력을 문제 해결의 사례로 활용하여 새롭게 발생하는 고장에 대한 조치가이드를 제공하는 지능형 조치지원시스템을 제안하고자 한다. 이를 위하여, 2015년부터 2017년동안 생성된 차량고장 데이터를 수집하여 사례베이스를 구축하였고, 차원축소 기법인 비음수 행렬 인수분해(NMF), 잠재의미분석(LSA), Doc2Vec을 통해 고장의 특징을 추출하여 벡터 간의 코사인 거리를 측정하는 방식으로 유사 사례를 검색하였으며, 위의 알고리즘에 의해 제안된 조치내역들 간 성능을 비교하였다. 분석결과, 고장 내역의 키워드가 적은 경우의 유사 사례 검색과 조치 제안은 코사인 유사도를 직접 적용하는 경우에도 좋은 성능을 낸다는 것을 알 수 있었고 차원 축소 기법들의 성능 비교를 통해 문맥적 의미를 보존하는 차원 축소 방식 중 Doc2Vec을 적용하는 것이 가장 좋은 성능을 나타낸다는 것을 알 수 있었다. 텍스트 마이닝 기술은 여러 분야에서 활용을 위한 연구들이 이루어지고 있는 추세이나, 본 연구에서 활용하고자 하는 분야처럼 전문적인 용어들이 다수이고 데이터에 대한 접근이 제한적인 환경에서 이러한 텍스트 데이터를 활용한 연구는 아직 부족한 실정이다. 본 연구는 이러한 관점에서 키워드 기반의 사례 검색을 보완하고자 텍스트 마이닝 기법을 접목하여 고장의 특징을 추출하는 방식으로 사례를 검색해 조치를 제안하는 지능형 진단시스템을 제시하였다는 데에 의의가 있다. 이를 통해 현장에서 바로 사용 가능한 진단시스템을 단계적으로 개발하는데 기초자료로써 시사점을 제공할 수 있을 것으로 기대한다.

기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 (A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm)

  • 신휴성;김동규;임민진;이규범;오영섭
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.95-107
    • /
    • 2017
  • 본 논문에서는 제도적으로 운영 중인 터널내 CCTV들로부터 실시간으로 들어오는 영상들을 최신 딥러닝 알고리즘을 이용, 학습시켜 다양한 조건의 터널환경에서 돌발 상황을 감지하고 그 돌발 상황의 종류들을 분류해 내는 시스템 개발을 위한 사전검토 연구를 수행하였다. 사전검토 연구를 위해, 2개의 도로현장의 교통류 CCTV영상 일부를 이용하여 가용한 전통적인 영상처리기법으로 영상내부로 집입하는 차량을 감지하고, 이동경로를 추적하여 일정 시간간격의 이동 차량의 좌표와 시간정보를 추출하고 학습자료를 구성하였다. 각 차량의 이동정보는 차선변경, 정차 등 6가지의 이벤트 정보와 연계된다. 차량 이동정보와 이벤트로 구성된 학습자료는 레질리언스(resilience) 기계학습 알고리즘을 이용하여 학습하였다. 2개의 은닉층을 설정하고, 각 은닉층의 노드수에 대한 9개의 은닉구조 모델을 설정하여 매개변수 연구를 수행하였다. 본 사전검토의 경우에는 첫 번째, 두 번째 은닉층 노드수가 각각 300개와 150개로 설정된 모델이 합리적으로 가장 추론정확도가 높은 것으로 평가되었다. 이로부터 일반화되기 매우 힘든 복잡한 교통류 상황을 기계학습을 이용하여 어떠한 사전 규칙설정 없이도 교통류의 특징들을 정확히 자동으로 감지할 수 있는 가능성을 보였다. 본 시스템은 시스템의 운용을 통해 지속적으로 교통류 영상과 이벤트 정보가 늘어난다면, 자동으로 그 시스템의 인지능력과 정확도가 자동으로 향상되는 효과도 기대할 수 있다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.