• 제목/요약/키워드: 시간기반 추론 알고리즘

검색결과 65건 처리시간 0.029초

K-Means 클러스터링 알고리즘을 이용한 사례기반 추론에 관한 연구 (A Study on Case-based Reasoning using K-Means Clustering Algorithm)

  • 현우석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.341-344
    • /
    • 2003
  • 사례 기반 추론(case-based reasoning)은 현재의 문제를 해결하기 위해서 과거에 유사하게 수행된적이 있는 사례를 유추하여, 유추된 사례의 해를 이용하는 기법으로서 규칙 기반 추론과 함께 여러분야에 응용되고 있다. 하지만 사례기반 추론 시 새로운 사례를 해결하기 위하여 사례베이스 안의 모든 사례를 검색해야 하기 때문에 수행시간이 증가되는 문제점을 지니고 있다. 본 연구에서는 규칙 및 K-Means 클러스터링 알고리즘에 의한 사례 기반 추론을 이용한 ADS-DAAP(Advanced Diagnosis System for Diseases associated with Acute Abdominal Pain)를 제안한다. 제안하는 시스템은 기존의 CDS-DAAP(Combined Diagnosis System for Diseases associated with Acute Abdominal Pain)와 비교해 볼 때, 수행시간을 감소시켰다.

  • PDF

u -Office 서비스 추론 기술을 위한 기계학습 기반 알고리즘

  • 김승혜;홍은재;박병철;박형곤
    • 정보와 통신
    • /
    • 제32권4호
    • /
    • pp.10-15
    • /
    • 2015
  • 본고에서는 u-Office 서비스를 실현하기 위하여 이동 단말 기기로부터 수신한 사용자의 시간 및 위치 이동 정보를 이용해서 사용자에게 유용한 서비스를 제공하는 데 필요한 사용자 맞춤형 서비스 제공 통합 프레임워크 및 추론 기술 알고리즘에 대해 기술하고자 한다. 사용자 맞춤형 서비스제공 통합 프레임워크는 사용자 이동단말기 및 시간 및 이동 데이터를 저장하는 AP, AP의 데이터를 수집하는 데이터베이스, 사용자 이동 단말 어플리케이션 등으로 구성되어있으며, 사용자의 시간 및 위치 정보를 학습하여 이동 경로를 예측하고 유용한 서비스를 제공하기 위해 사용된 기계학습 기반 추론 알고리즘에 대하여 알아본다. u-Office 서비스를 실현하기 위하여 실제로 캠퍼스 및 교실범위로 구현한 사용자 패턴기반 맞춤형 서비스 프레임워크에 대해 알아보고 제공 가능한 서비스에 대하여 논의한다.

태블로 알고리즘 기반 온톨로지 추론 엔진의 속도 향상을 위한 방법 (Methods to Reduce Execution Time of Ontology Reasoners based on Tableaux Algorithm)

  • 김제민;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권2호
    • /
    • pp.153-160
    • /
    • 2009
  • 온톨로지의 크기가 대형화됨에 따라, 온톨로지 내부 구조는 점점 복잡해지고 있다. 따라서 온톨로지 구축과정에서 발생하는 여러 가지 논리적 오류를 찾아내어 수정하는 것은 매우 어려운 작업이 되고 있다. Minerva[1]는 OWL로 작성한 온톨로지 중 논리적 오류를 갖는 개념들을 자동으로 탐지하고, 개념간의 계층 관계를 추론하기 위해 개발된 온톨로지 추론 엔진이다. Minerva를 포함한 대부분의 서술 논리 기반의 온톨로지 추론 엔진은 태블로 알고리즘(Tableau Algorithm)을 기반으로 동작한다. 태블로 알고리즘을 그대로 적용할 경우 시간 및 공간 복잡도가 상당히 높아지기 때문에 다양한 최적화 기법이 필요하다. 본 논문에서는 태블로 알고리즘을 사용하는 온톨로지 추론 엔진의 속도를 향상시키는 최적화 기법들을 제안한다. 제안한 기법들은 선행 연구로서 이미 개발된 온톨로지 추론엔진 Minerva에 적용되어 성능향상을 이끌어 내었다.

빅 데이터 처리를 위한 적응적 사용자 및 토픽 모델링 기반 자동 TV 프로그램 추천시스템 (Adaptive User and Topic Modeling based Automatic TV Recommender System for Big Data Processing)

  • 김은희;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.195-198
    • /
    • 2015
  • 최근 TV 서비스의 가입자 및 TV 프로그램 콘텐츠의 급격한 증가에 따라 빅데이터 처리에 적합한 추천 시스템의 필요성이 증가하고 있다. 본 논문은 사용자들의 간접 평가 데이터 기반의 추천 시스템 디자인 시, 누적된 사용자의 과거 이용내역 데이터를 저장하지 않고 새로 생성된 사용자 이용내역 데이터를 학습하는 효율적인 알고리즘이면서, 시간 흐름에 따라 사용자들의 선호도 변화 및 TV 프로그램 스케줄 변화의 추적이 가능한 토픽 모델링 기반의 알고리즘을 제안한다. 빅데이터 처리를 위해서는 분산처리 형태의 알고리즘을 피할 수 없는데, 기존의 연구들 중 토픽 모델링 기반의 추론 알고리즘의 병렬분산처리 과정 중에 핵심이 되는 부분은 많은 데이터를 여러 대의 기계에 나누어 병렬분산 학습하면서 전역변수 데이터를 동기화하는 부분이다. 그런데, 이러한 전역데이터 동기화 기술에 있어, 여러 대의 컴퓨터를 병렬분산처리하기위한 하둡 기반의 시스템 및 서버-클라이언트간의 중재, 고장 감내 시스템 등을 모두 고려한 알고리즘들이 제안되어 왔으나, 네트워크 대역폭 한계로 인해 데이터 증가에 따른 동기화 시간 지연은 피할 수 없는 부분이다. 이에, 본 논문에서는 빅데이터 처리를 위해 사용자들을 클러스터링하고, 클러스터별 제안 알고리즘으로 전역데이터 동기화를 수행한 것과 지역 데이터를 활용하여 추론 연산한 결과, 클러스터별 지역별 TV프로그램 시청 토큰 별 은닉토픽 할당 테이블을 유지할 때 추천 성능이 더욱 향상되어 나오는 결과를 확인하여, 제안된 구조의 추천 시스템 디자인의 효율성과 합리성을 확인할 수 있었다.

  • PDF

OWL-DL 기반의 대용량 ABox 추론 기법 (A Method for Supporting Description Logic SHIQ(D) Reasoning over Large ABox)

  • 서은석;최용준;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.352-356
    • /
    • 2006
  • 현존하는 추론 엔진들은 대부분 Tableaux 알고리즘 기반의 TBox의 최적화를 위한 연구를 진행하였다. 하지만 현실에서 대용량의 ABox를 추론하기 위한 유한한 시간 내에 결정 가능성을 보장하지 못한다. 따라서 실용성 있는 추론 엔진 효율을 위해서는 대용량 데이터를 가지는 ABox를 위한 최적화된 추론 기법이 필요하다. 본 논문에서는 OWL-DL 기반의 온톨로지(Ontology)를 데이터로그(Datalog)와 같은 규칙(Rule) 형태로 변형하여 관계형 데이터베이스와 같은 저장 시스템과 연동하기 위한 방법을 이용한다. 최종적으로 실세계의 환경에서의 데이터타입 속성(Datatype Property)이 포함된 SHIQ(D) 구성의 실용적인 추론 시스템을 수행하고자 한다. 따라서 OWL이 가지는 공리(Axiom)를 이용하여 데이터타입 속성이 포함된 규칙을 적용한 추론 방법에 대해서 제안하였다.

  • PDF

광학 흐름과 스케일 리샘플링을 통한 실시간 얼굴 탐지 기법 (A Method for Real-Time Face Detection through Optical Flow and Scale Resampling)

  • 김상정;이동건;서영석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.862-863
    • /
    • 2024
  • 기존의 딥러닝 모델을 활용한 얼굴 탐지 시스템은 영상을 처리할 때 이미지의 양이 과도하여 추론 속도가 영상 재생 속도보다 느려지게 되고, 이로 인해 지연 현상이 발생한다. 본 논문은 이미지 크기 조정 및 광학 흐름을 활용하여 얼굴 탐지에 필요한 추론량을 줄이는 기법을 제안한다. 제안된 기법은 세 단계의 처리 과정으로 구성된다. 첫 번째 단계에서는 프레임의 크기를 줄여 프레임 처리 속도를 효과적으로 향상시킨다. 두 번째 단계에서는 비탐지 구간이 아닌 프레임만을 배치 처리하여 딥러닝 모델로 추론하여 처리 시간을 단축시킨다. 세 번째 단계에서는 광학 흐름 알고리즘을 이용하여 비탐지 구간에서 얼굴 추적을 함으로써 정확도는 유지하면서 탐지 시간을 단축한다. 본 논문에서 제안하는 이미지 크기 조정 및 광학 흐름 알고리즘 기반 얼굴 탐지 시스템은 처리 시간을 수십 배 이상 단축하여 영상에서의 얼굴 탐지에 있어서 우수한 성능을 입증하였다.

확률적 러프 집합에 기반한 근사 규칙의 간결화 (Reduction of Approximate Rule based on Probabilistic Rough sets)

  • 권은아;김홍기
    • 정보처리학회논문지D
    • /
    • 제8D권3호
    • /
    • pp.203-210
    • /
    • 2001
  • 본 논문에서는 저장 데이터베이스의 정보 시스템을 정제하여 새로운 객체를 근사 추론하기 위한 규칙 생성에 관한 연구이다. 이 때 많은 수의 규칙 생성은 의사결정자로 하여금 직관적인 판단을 어렵게 하며 의사 결정 시 부가되는 시간적인 단점도 있다. 그러므로 본 논문에서는 확률적 러프 이론에 기반하여 규칙을 최대한 간결화 하는 데 주안점을 두었다. 제안하는 알고리즘은 러프 이론에 기반한 최적 리덕트를 생성하는 과정에 확률적 개념을 도입하여 리덕트 생성에서부터 어느 정도의 허용치를 부여함으로써 기존의 규칙 생성 알고리즘의 근사 결정 규칙을 보다 간결하게 표현할 수 있다. 이 과정에서 제안한 확률적 최소 리덕트 생성 알고리즘은 기존의 리덕트를 더욱 작게하여 추론에 필요한 조건 속성의 수를 최소화하였고 이는 확률적 근사 결정 규칙의 생성 과정에서 시간 복잡도에 따른 시간을 줄일 수 있다. 제안된 알고리즘을 이용하여 패턴 분류 문제에 표준적으로 사용되는 IRIS 데이터와 Wisconsin Breast Cancer 데이터에 대해 실험하였으며 허용된 분류율 하에서 규칙의 수와 간결함의 정도를 기존 알고리즘과 비교하였다.

  • PDF

개선된 다이나믹 프로그래밍과 품질 정보 및 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘

  • Lee, Seung-Hwan;Park, Choong-Shik;Kim, Kwang-Baek
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.341-350
    • /
    • 2007
  • DNA 염기 서열 배치 알고리즘은 분자 생물학 분야에서 단백질과 핵산 서열들의 분석에서 중요한 방법이다. 생물학적인 염기 서열들은 그들 사이의 유사성과 차이점을 나타내기 위해 정렬된다. 본 논문에서는 기존의 DNA 염기 서열 배치 방법을 개선하기 위하여 DP(Dynamic Programming) 알고리즘의 비용증가( O (nm) ) 문제를 해결하는 Quadrant 방법과 품질 정보 및 퍼지 추론시스템(fuzzy inference system)을 적용한 DNA 염기 서열 배치 알고리즘을 제안한다. 본 논문에서 제안한 DNA 염기 서열 배치 알고리즘은 Quadrant 방법을 적용하여 Needleman-Wunsch의 DP 기반 알고리즘에서의 행렬 생성 단계에서 발생하는 불필요한 정렬 계산을 제거하여 전체 수행 시간을 단축하고, 각 DNA 염기 서열 단편 각각의 길이 차이와 낮은 품질의 DNA 염기 빈도를 퍼지 추론 시스템에 적용하여 지능적으로 갭 비용(gap cost)을 동적으로 조정한다. 제안된 알고리즘의 성능 평가를 위해 NCBI (National Center for Biotechnology Information)의 실제 유전체 데이터로 성능을 분석한 결과, 제안된 알고리즘이 기존의 품질정보만을 이용한 알고리즘보다 개선된 것을 확인하였다.

  • PDF

M&S와 AI간의 유기적 통합을 위한 시간기반 전문가 시스템 설계 (Time-based Expert System Design for Coherent Integration Between M&S and AI)

  • 신석훈;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제26권2호
    • /
    • pp.59-65
    • /
    • 2017
  • M&S의 발전과 더불어 국방 M&S등 인간의 의사결정을 포함하는 분야의 요구가 증대되는 현실에서 AI기술을 활용한 모델링 연구가 각광받고 있다. AI는 복잡한 문제 해결을 위한 방법임은 분명하나 M&S에서 요구되는 입력시점과 처리시간 등의 논리적 시간을 고려하지 않았다. 따라서 본 논문에서는 대표적인 AI 기술인 규칙기반 전문가시스템을 논리적 시간을 고려한 규칙구조 "IF-THEN-AFTER"와 추론엔진으로 재설계한 시간기반의 전문가 시스템을 제안하고, 기존의 규칙기반 전문가 시스템과의 차이를 설명하기 위한 간단한 예제를 들어 논리적 분석을 시도하였다. 그 결과로 제안하는 시간기반의 전문가 시스템 모델은 일반적인 규칙기반 전문가시스템과 다르게 입력시점과 추론시간에 따라 다른 결과를 보임을 알 수 있으며, 이는 M&S에서 요구되는 논리적 시간을 고려한 AI의 문제해결이 가능함을 의미한다.

연관 규칙 생성 알고리즘 기반의 개인화 의류 추천 시스템 (A Personalized Clothing Recommender System Based on the Algorithm for Mining Association Rules)

  • 이종현;이석훈;김장원;백두권
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.59-66
    • /
    • 2010
  • 이 논문에서는 온톨로지로 표현한 트랜잭션으로부터 연관 규칙을 생성하고 이를 기반으로 추론을 수행하여 개인화 의류 추천을 제공하는 시스템을 제안한다. Onto-Apriori 알고리즘을 이용한 연관 규칙 생성은 유행에 따른 구매성향 변동을 능동적으로 분석할 수 있다. 생성된 규칙은 온톨로지에 메타 노드로 표현하고 이를 기반으로 추론함으로써 사용자의 질의에 맞는 추천 항목을 찾아낼 수 있다. 시스템을 평가하기 위하여 추론 소요시간과 추천 정확도 2가지 요소를 기준으로 시뮬레이션을 수행하여 유효성을 증명하였다.