• Title/Summary/Keyword: 시간경로 마이크로어레이

Search Result 7, Processing Time 0.015 seconds

Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter (약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석)

  • Lee, Hyo-Jung;Kim, Peol-A;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.623-631
    • /
    • 2011
  • A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.

A Review of Cluster Analysis for Time Course Microarray Data (시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰)

  • Sohn In-Suk;Lee Jae-Won;Kim Seo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.13-32
    • /
    • 2006
  • Biologists are attempting to group genes based on the temporal pattern of gene expression levels. So far, a number of methods have been proposed for clustering microarray data. However, the results of clustering depends on the genes selection, therefore the gene selection with significant expression difference is also very important to cluster for microarray data. Thus, this paper present the results of broad comparative studies to time course microarray data by considering methods of gene selection, clustering and cluster validation.

A Pattern Consistency Index for Detecting Heterogeneous Time Series in Clustering Time Course Gene Expression Data (시간경로 유전자 발현자료의 군집분석에서 이질적인 시계열의 탐지를 위한 패턴일치지수)

  • Son, Young-Sook;Baek, Jang-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.371-379
    • /
    • 2005
  • In this paper, we propose a pattern consistency index for detecting heterogeneous time series that deviate from the representative pattern of each cluster in clustering time course gene expression data using the Pearson correlation coefficient. We examine its usefulness by applying this index to serum time course gene expression data from microarrays.

Predicting Survival of DLBCL Patients in Pathway-Based Microarray Analysis (DLBCL 환자의 대사경로 정보를 이용한 생존예측)

  • Lee, Kwang-Hyun;Lee, Sun-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.705-713
    • /
    • 2010
  • Predicting survival from microarray data is not easy due to the problem of high dimensionality of data and the existence of censored observations. Also the limitation of individual gene analysis causes the shift of focus to the level of gene sets with functionally related genes. For developing a survival prediction model based on pathway information, the methods for selecting a supergene using principal component analysis and testing its significance for each pathway are discussed. Besides, the performance of gene filtering is compared.

Missing values imputation for time course gene expression data using the pattern consistency index adaptive nearest neighbors (시간경로 유전자 발현자료에서 패턴일치지수와 적응 최근접 이웃을 활용한 결측값 대치법)

  • Shin, Heyseo;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.269-280
    • /
    • 2020
  • Time course gene expression data is a large amount of data observed over time in microarray experiments. This data can also simultaneously identify the level of gene expression. However, the experiment process is complex, resulting in frequent missing values due to various causes. In this paper, we propose a pattern consistency index adaptive nearest neighbors as a method of missing value imputation. This method combines the adaptive nearest neighbors (ANN) method that reflects local characteristics and the pattern consistency index that considers consistent degree for gene expression between observations over time points. We conducted a Monte Carlo simulation study to evaluate the usefulness of proposed the pattern consistency index adaptive nearest neighbors (PANN) method for two yeast time course data.

Missing Values Estimation for Time Course Gene Expression Data Using the Sequential Partial Least Squares Regression Fitting (순차적 부분최소제곱 회귀적합에 의한 시간경로 유전자 발현 자료의 결측치 추정)

  • Kim, Kyung-Sook;Oh, Mi-Ra;Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.275-290
    • /
    • 2008
  • The size of microarray gene expression data is very big and its observation process is also very complex. Thus missing values are frequently occurred. In this paper we propose the sequential partial least squares(SPLS) regression fitting method to estimate missing values for time course gene expression data that has correlations among observations over time points. The SPLS method is to combine the sequential technique with the partial least squares(PLS) regression fitting method. The usefulness of method proposed is evaluated through some simulation study for three yeast time course data.

Detecting survival related gene sets in microarray analysis (마이크로어레이 자료에서 생존과 유의한 관련이 있는 유전자집단 검색)

  • Lee, Sun-Ho;Lee, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • When the microarray experiment developed, main interest was limited to detect differentially expressed genes associated with a phenotype of interest. However, as human diseases are thought to occur through the interactions of multiple genes within a same functional category, the unit of analysis of the microarray experiment expanded to the set of genes. For the phenotype of censored survival time, Gene Set Enrichment Analysis(GSEA), Global test and Wald type test are widely used. In this paper, we modified the Wald type test by adopting normal score transformation of gene expression values and developed a parametric test which requires much less computation than others. The proposed method is compared with other methods using a real data set of ovarian cancer and a simulation data set.