• Title/Summary/Keyword: 습지환경

Search Result 1,112, Processing Time 0.018 seconds

Improvement plan and factual survey for weirs, drop structures and bridges in medium scale streams of Kyonggi province (경기도 지방하천에서의 보, 낙차공 및 교량 시설물의 실태 및 개선 방안 제시)

  • Noh, Huiseong;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Weirs are to secure amount water of streams and drop structures are to enhance stabilization of stream bed and bridges are to connect isolated region, which are called stream crossing structures. In the stream design criteria, directions for minimum size of structures are suggested to secure stability of stream crossing structures. However the sizes of almost all existing weirs and drop structures are not satisfied with the stream design criteria and only 22 percent of the peirs of bridges are satisfied. To enhance hydraulic stability of existing weirs and drop structures, it is required that the ratio of bed protection to apron should be above 3.3. According to factual survey of structures in the sample streams, it has been shown that the longitudinal slope of rapid works with 1:20 is the most reasonable to design velocity if existing weirs and drop structures are rehabilitated into rapid works. It has been known that violating freeboard and span length of piers should make existing bridges reconstructed or removed. However, comprehensive review including deterioration level of bridges, special regulation for span length, etc. should be considered to determine rehabilitation plan of bridges. In this study, a procedure has been suggested to improve hydraulic stability of weirs, drop structures and piers of bridges. Sound environment of stream and reduction of natural disaster could be achieved by improving stability of cross structures, which could be obtained by governmental budget and active stream management including observance of design criteria.

Studies on β-diversity for high plant community turnover in flood plain restoration (수변 복원 시 식물종 다양성 증진을 위한 β-diversity 연구)

  • Han, Young-Sub;Kim, Hae-Ran;Han, Seung-Ju;Jeong, Jung-Kyu;Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;Kang, Tay-Gyoon;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.501-508
    • /
    • 2013
  • We have researched heterogeneity of naturalized river plant community by ${\beta}$-diversity for restoration of river community which has high diversity plant species. As a result the average of heterogeneity was 0.32(range 0.23~0.37) from the river to the inland. This value shows community turnover of species composition of plant communities 6 times. The ${\beta}$-diversity was no difference among water system of Seomjin river, Han river, Nakdong river and Geum river. The upper-river valley(0.36) was higher than lower-river valley(0.23) in each water system(p level<0.05). Multiple regressing analysis was used for look the relationship with Environmental factors as a result, it shows ${\beta}$-diversity significant on a slope. River mimetic diagram with dominant species that appear through Belt-transect painted. Dominant plant species turned 6 time in upper-river and turned about 5 time in lower-river. The result of this study suggested practical basis of planting species and planting pattern. To improve species diversity of river plant community, slope degree raise is the most important.

Analysis of Domestic Water Pollution Accident and Response Management (국내 수질오염사고 현황 분석과 대응 체계)

  • Lee, Jae-Kyun;Kim, Tae-O;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.529-534
    • /
    • 2013
  • Domestic water pollution accidents and response management were analysed on the basis of collected data from the latest 5 years. Although average 66.7 number of accidents were happened every year, no damages of human life were reported yet. According to the data collected, the accidents were occurred at Han river, Nakdong river, Keum river, Youngsang river and other rivers, where the percentages were 25.4%, 20.3%, 12%, 8% and 29.7%, respectively. Main reasons were blamed for negligent management, mixed influences, natural phenomenon and traffic accident. Response activities were performed in the case of the oil leak, the fish death caused by water environment, the spill of chemicals. From the diagnosis of water pollution accidents, it is recommended that the legistration of all control centers for their roles and duties was made in case of the big accidents as well as the small/middle accidents.

An approximate study on flood reduction effect depending upon weir or gate type of lateral overflow structure of washland (강변저류지 월류부에서 월류제 또는 수문 형식에 따른 홍수저감효과에 관한 개략적 연구)

  • Ahn, Tae Jin
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.573-583
    • /
    • 2013
  • Construction of large-scale structures such as dams would be suggested actively to cope with change of flood characteristics caused by climate change. However, due to environmental, economic and political issues, dams are not ideally constructed. Thus flood damage reduction planning projects would get started including washland or detention pond for sharing the flood in basin. The washland made artificially by human being is an area of floodplain surrounded by bank to be intentionally inundated by overflowing through overflow structure adjacent to main channel during flood season. Flood reduction capacity at just downstream of each washland could be affected by type, length, and crest elevation of overflow structure in addition to shape of design hydrograph, storage volume of washland, etc.. In this study flood reduction effects of washland are estimated for overflow weir type and gate type to compare the results of flood reduction respectively subjected to given hydrograph in sample site, the Cheongmicheon stream. It has been shown that even if gate type at overflow structure could yield more flood reduction than overflow weir type, economic aspect such as initial cost, operation cost and maintenance cost should be considered to select the type of overflow structure because flood reduction rate by gate type could not be significant value from engineering point of view.

Polyphenism by the level of predation risk in larval salamander, Hynobius leechii (포식압 수준에 따른 한국산 도롱뇽 유생의 표현형의 변화)

  • Hwnag, Jihee;Kim, Eun-Ji;Kim, Ho-Jin;Chung, Hoon
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.485-491
    • /
    • 2013
  • This study examined the cannibalistic polyphenism of larval salamander Hynobius leechii by the level of predation risk. Salamander eggs were collected from three regions (Mountain Inwang, Mountain Surak and Gwangju). Eggs were treated by three different risk conditions: (1) high risk, predation risk three times a day; (2) medium risk, predation risk once a day; and (3) low risk, no predation risk. Predation risk was conducted using a chemical cue from Chinese minnows. The chemical cue treatment started from the day of collection and ended one week after hatching. Post-treatment measurements were head width at the level of the eyes (HWE), largest head width (LHW), and Snout-vent length of the each larva. To compare the morphological change according to the predation risk, we modified the two head size, HWE and LHW, to HWE/LHW. A significant difference in HWE/LHW and snout-vent length was evident according to the level of predation risk. And larval mortality was increase by the predation risk. The results indicate that predation risk can cause cannibalistic polyphenism of larval salamander and this morphological change could influence larval mortality.

Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin (장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로)

  • Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.61-68
    • /
    • 2019
  • Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.

Development of Optimization Model for Long-term Operation Planning of the Hydropower Reservoirs in Han River Basin (한강수계 발전용댐 장기 운영계획 수립을 위한 최적화 모형 구축)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.69-79
    • /
    • 2019
  • In Korea, more than 60% of the whole lands are mountainous area. Since many decades ago, hydroelectric power plants have been constructed and eco-friendly energy has been produced. Hydropower can cope with the rapidly changing energy supply and demand, and produce eco-friendly energy. However, when the reservoir is built, it is often inevitable to damage the environment due to construction of large structure. In this study, the optimal reservoir operation model was developed to maximize power generation by monthly operation for long-term operation planning. The dam operation model was developed using the linear programming which is widely used in the optimal resources allocation problems. And the reservoir operation model can establish monthly operation plan for 1 year. Linear programming requires both object function and constraints to be linear. However, since the power generation equation is nonlinear, it is linearized using the Taylor Expansion technique. The optimization results were compared with the 2009-2018 historical data of five hydropower reservoirs. As a result, the total optimal generation is about 10~37% higher than the historical generation.

Citation Relationship Trend Analysis of Virtual Water and Water Footprint Studies in Korea (국내 가상수 및 물발자국 산정 연구의 인용관계 동향 분석)

  • Park, Sungje;Lee, Minhyeon;Ju, Yena;Park, Kyeyoung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.141-148
    • /
    • 2019
  • South Korea is a nation highly reliant on virtual water imports, which raises concerns of water crisis and food crisis at the national level. Virtual water and water footprint studies that consider the environment, social, and economic issues have been consistently addressed. However, there is a lack of Korean research, so the calculation method and comparison analysis are greatly dependent on foreign research results. The calculation results for Korean domestic agricultural products have been released in earnest since 2014. Thus, there has been an increase in comparison studies using domestic virtual water and water footprint results. This study identified the Korean agricultural and livestock water footprint research direction to determine the citation relationship trends. Domestic and foreign research results were analyzed from Korean water footprint related literature from the past 10 years. Therefore, a citation relationship diagram was formed from the literature analysis results. Virtual water and water footprint related research performance are provided in the appendix so researchers can utilize the various information related to this field in the future. In addition, national strategy policy making is expected to be presented for effective water resources management.

An Analysis of the Runoff Variation due to Urbanization in Cho-kyung Stream Watershed (조경천 유역의 도시화에 따른 유출 변화 추이 분석)

  • Choi, Jung-Hwa;Lee, Jeong-Ju;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2009
  • Rainfall-runoff procedures of urban area are more complicated than agricultural procedures. Extension and development of town leads to shift of the basin characteristics and it makes more difficult to use runoff models. In this study, the changes of hydrologic circumstances and the shape of hydrograph due to the urbanization in Cho-kyung river basin has been assessed which is the representative urban stream in Jeonju city. The urbanization can be classified as four typical year. The natural basin period(1924) that is before the urban development, the period of construction of Chonbuk National University campus (1963), the period of construction of residential area(1986), and urbanization process has been finally completed in 1995. The rainfall-runoff analysis has been carried out by Storm Water Management Model(SWMM) under condition of the basin characteristics and impervious area of each period. It was found that hydrologic characteristics such as river length, roughness coefficient, and coefficient of surface storage has been decreased. According to the land use change, the pervious area was decreased from 97.7% to 42%, while the impervious area was increased from 0.6% to 34%. The time of concentration was shorten from 90 minutes to 37 minutes. Along with decreasing the time of concentration, the peak discharge was increased from $4.37m^3/s$ to $111.13m^3/s$, and the runoff rate was also increased from 0.8% to 68%.

  • PDF

The Change Analysis of Plant Diversity in Protected Horticulture of Agricultural Ecosystems (시설원예단지 조성이 농업생태계의 식생다양성에 미치는 영향 분석)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Park, Min-Jung;Yun, Sung-Wook;Lee, Si-Young
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.173-182
    • /
    • 2016
  • Although the ecosystem extends numerous functions for the benefit of humankind, construction of horticultural facilities can potentially lead to the degeneration of some of these functions owing to the expansion of impervious regions and loss of habitats. Thus, this study aimed to examine the effect of construction of horticultural facilities on plant biodiversity. Analysis of the vegetation distribution characteristics showed that horticultural facilities had significantly lower plant diversity than did rice paddies. Hence, the proposed approach involved low-impact development, arrangement of habitat space, plant preservation, restricted use of chemical fertilizer, habitat creation, and reduced preservation cost. Lifestyle analysis suggested the importance of developing favorable environments for the growth of annual plants and aquatic plants. In all, 20 species of naturalized plants belonging to 10 families were identified. Furthermore, the proportion of these naturalized plants was higher in glass greenhouses and multi-span greenhouses, suggesting the advantages of employing natural soil mulching while avoiding concrete mulching. Statistical analysis was performed to validate the results, which suggested that impervious regions be converted to natural soils. Collectively, the findings of this study are expected to be used for establishing policies for the construction of eco-friendly and ecological horticultural facilities; this may aid the maintenance of sustainable agricultural landscapes and large-scale development of the reclaimed lands.